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Abstract

New programming languages appear constantly. Many of them are based on ex-
isting ones but differ sufficiently so they are incompatible (e.g., C/C++ and Java).
Building on the CV language (Ditchfield [47] and Bilson [16]), this thesis continues
the CV “evolutionary” approach to programming language design based upon the
very successful C programming language, preserving its syntax and semantics while
extending it with features that considerably enhance its expressiveness. The evo-
lutionary approach allows for the introduction of powerful abstraction mechanisms

with minimal disruption to legacy code, truly “making the future safe for the past”
120].

The new features added to CV fix existing problems in C and add features that
considerably ease the construction and maintenance of C programs. C’s declara-
tions and switch statement are modified to fix well-known problems. New features
in the form of tuples, exceptions and attributes are added to enhance program-
ming and increase robustness. Possible sources of incompatibility are identified

and empirically studied.
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Chapter 1

Introduction

In 1962, the historian and philosopher of science, T.S. Kuhn claimed in his influen-
tial book The Structure of Scientific Revolutions [84] that acquisition of scientific
knowledge does not proceed by accretion but rather by revolution: one theory

superceding its forerunner by dramatically changing the latter’s model of reality.

It would seem that a similar situation occurs to the theory of programming,
where new tools and techniques supercede and render the old obsolete. Every year
a wealth of new, mutually incompatible programming languages make their ap-
pearence, each with its own notion of what computation is (on the theoretical side),
how particular hardware resources should be presented to the end programmer (on
the practical side), and what abstractions need be provided to model problems (on
the application side). In other words, each programming language interprets the
task of programming in different, incompatible ways. Like Kuhn'’s theories, every

new programming language presents a different view of reality.

However, when it comes to the craft of programming, practitioners are much
more resistant to adopting new tools. This phenomenon is illustrated by the fact
that, among programming languages, the oldest ones are still alive and thriving.
When, for whatever reasons, a new language does make its way into the program-
mers’ set of tools, old ideas may need to be expressed in (potentially radically)
different notation, if not altogether different notions than before, and require re-

learning. Moreover, whatever corpus of code is written in prior languages is ren-



dered useless.

This contradiction between the status quo of existing programming languages
and the complete change associated with new languages is largely unnecessary, since
most languages differ from one another in relatively small ways. Languages evolve
from others languages either by eztension, adding features the original lacks or pro-
vides in inconvenient ways (e.g., original C++ and its C substrate); by abstraction,
when one or several features of the language are found to be instances of an ab-
straction mechanism (e.g., the namespace system in C++ is abstracted by packages
in Java and assemblies in C#); by dulcification, when a commonly used construct
in a language is given especial syntax (e.g., a select statement in C subsumes a
chain of if-then-else chain in Algol 60); by preemption, when a feature previously
left to the programmer’s discretion becomes fixed in the language (e.g., different
approaches in memory management of C++ and Java); or by subtraction, removing
problematic or dangerous features in the original language (e.g., static versus dy-
namic binding in Scheme from —early— Lisp, or Java removing multiple inheritance
from C++). Not all these forms of modification (in fact, only the last two) imply
the incompatibility of the resulting language with its ancestor. Unfortunately, none

implies compatibility.

It is my impression that the art of programming language design lies not so
much in providing new language constructs and mechanisms, but in integrating
desired features in such a way that they present a convenient notation and consistent
model of computation to the end programmer, while allowing for a reasonably fast
translation into efficient machine code. This thesis describes the current stage of
a project focusing on language evolution in all the forms described above (except

preemption), that uses the C programming language as a departure point.

The remainder of the chapter explains the motivation behind C as the substrate
and other projects that have undertaken a similar goal. It also gives an overview
of the CV project and its objectives. Finally, it presents the CV language transla-
tor architecture, that serves as a testbed for the implementation of the extensions
described in later chapters. These extensions include an alternative declaration
syntax for C objects (chapter 2), modifications to C’s control structures (chapter

3) and tuples as a data structuring mechanism, the implications of having such a



mechanism weaved into the polymorphic fabric of the language and notational ben-
efits (chapter 4). Chapter 5 describes a mechanism for code annotations that allow
the programmer limited access to the structures and information the translation
system has generated about the program. In chapter 6, a source code analysis sys-
tem is described and used to gather evidence as to the relevance of the extensions
presented in previous chapters, and estimate the impact of the remaining incom-
patibilities between C and CV on existing code. Finally, chapter 7 presents the
conclusions derived from this work and the identified areas of further study. The
appendices describe a number of minor additional facilities in the language (e.g.,
extended numerical literals and composite literals for initialization). Examples of

CV usage and a summary of incompatibilities with C are also appended.

A remark about the typesetting style used in the thesis. A large number of lan-
guages are mentioned in this work for constrasting purposes. The names of some
of these languages have no standard spelling, so this work adopts the convention
of spelling their names in all capitals if pronounced by enumerating their letters
(APL, SQL, etc.), and mixed case otherwise (Fortran, Algol, Cobol). Their defin-
ing document cited in the bibliography as their standard, the user manual of the
reference implementation, or, failing those, the paper in which the language was
first presented. Also, some effort has been made to typeset the code in these lan-
guages according to the usual practices in indentation and prettyprinting as applies
to the particular language. This might be at times confusing (for example when a
token marked as a keyword in one appears as a normal identifier in another), but

I thought it preferable to the alternative of a single, uniform, typesetting style.

1.1 C programming language

The C programming language is enormously popular and influential. It has, how-
ever a number of troublespots despite several rounds of language revision and stan-
dardization. This thesis describes the way a new programming language, CV, ad-
dresses and corrects some of the most insidious of these troublespots, while main-
taining almost complete backwards compatibility. This chapter presents some of

C’s unfortunate design choices and omissions presented in the context of the C



programming language evolution. As well, an overview is given for some of the CV

solutions to these problems.

“Why extend C?” is, oddly enough, a question that is asked both by the C
programming language detractors and advocates alike. For the former, C’s rule has
run its course: the incremental refinement process of the language has gone as far
as it can and the burden of backward compatibility is too grievous to carry. It is
more productive to start from a clean slate, incorporating the lessons learned in
the 30-plus years C has been in use. After all, surely the programming projects
now being undertaken are different enough from those programmers had to deal
with 30 years ago to warrant a new language. For the latter, C is good as it is,
cautiously evolving via the usage-dictated changes introduced by the standardiza-
tion committee. More radical changes run the risk of not only failing to cure C’s
maladies but of introducing new ones in the process. This risk is evidenced by
the fact that, for every successful spinoff of C, like C++, countless other dialects
have been forgotten. Paraphrasing a quip by C.A.R. Hoare, “C is not only a great

improvement over its predecessors, but over most of its successors as well” [66].

However, C remains a proven, reliable, precisely defined workhorse, still remark-
ably healthy and used by many more programmers than C++ or Java. Furthermore,
the use of C continues to grow, especially in internationalization projects. One look
at the expanding Open Source community provides ample evidence'; for example,
close to 30% of the projects listed in freshmeat.com use C as their development
language, as opposed to the 13% that use C++, 13% that use Java, or 25% that use
some an scripting language (Perl, Python, Ruby and Tcl combined)?. Besides, C is
the target language of choice for a number of tools, ranging from parser generators
to programming language translators. C has been described as a “universal inter-
mediate representation” [4], or less charitably, a “machine-independent assembly
language”. C’s popularity has made it a frequent means for transmitting knowledge

to programmers of every level of expertise. It is common for a programmer these

'Tt has been commented that the Open Source community’s marked preference for C is, up to a
point, a result of the lack of an available C++ compiler. However, this deficiency is being rectified
with the release of gcc 3.x.

2Sample taken at the end of March 2004. The remainder of the projects hosted by freshmeat are
written in other languages.



days to have C as their first (and sometimes only) programming language.

It is in this context that voices of protest start mixing with those singing the
praises of C. Its unsuitability as a first language, and as a vehicle for teaching basic
programming concepts is consistently pointed out and has been extensively studied
[92]. This does not mean that beginners are the only victims to the language’s
idiosyncrasies; not at all, some of its features and idioms still bite the most sea-
soned of programmers from time to time [82, 101]. As well, C is often described
as deficient when it comes to modern language features. The abstraction mecha-
nisms' present in C are very simple (and comparatively not very far from the ones
provided by the original Fortran): variables, functions, and preprocessor macros.
The omission of more advanced abstraction mechanisms make language support
for modern programming practices minimal while making user-defined language
extensions hard to write and harder to maintain. This in a world where language
extensibility by the user is increasingly high in importance among most program-
ming language developers [119]. Furthermore, programming concepts unfamiliar in
the 70s have been explored and have been proven to enhance desirable properties

of software, like reliability, maintainability or security.

When a language has stayed in the mainstream as long as C, it is natural to
expect a number of attempts to engineer new features while preserving working code
and leveraging user expertise. A long string of successors (not as long as Pascal’s,
but long enough) and a protracted standardization process? attest to this. None of
these projects has accomplished these goals, but people keep trying and with good
reason. Richard Gabriel [57] lists “being similar to existing languages” as one of
the characteristics that a programming language should have to increase its chances
of success. Given C’s popularity, it is not surprising that so many designers have

used it as a (at least syntactic) basis for their own creations (e.g., C# and Java).

LAn abstraction or definitional mechanism is the set of facilities a programming language provides
to give a name to a particular entity (e.g., address of storage, address of an instruction, family of
functions, descriptions of types) for later reuse.

2While the goals of the standards committee include fixing the language as one of its many ob-
jectives, first and foremost, their effort has been to strictly define and then codify best practices,
preserving as much working legacy code as possible. Taking this into account, it is understandable
that fixing the language did not rank high in their list of priorities.



If the new language in question is not only “similar” but compatible, meaning that
all, or a significant portion of the programs written in the base language are valid
and correct, the chances of success are conceivably higher. To properly understand
how to fix C, it is necessary to describe the C language and its design philosophy,
inasmuch as both drive its latest incarnation, the ANSI C99 standard.

In the following section, a short history of C is provided, in the interests of un-
derstanding its evolution. Later sections of the chapter describe in some detail the
troublespots remaining in the language, and mention which of these are addressed
by this work.

1.2 C language evolution

C is a direct descendant of BCPL and, as such, heir to the tradition of procedural
languages in the style of Fortran and Algol 60 (figure 1.1). This lineage is still
easily noticed: C is small and compactly described, assets well suited to its original
domain, system programming. Dennis Ritchie blended these influences with his
own interpretations and additions into a design that, as he has pointed out, got
things “mostly right the first time” [108]. This basic language is the core around
which extensions have been built, and it has come to be known as the “spirit of C”.
This term has generated much heated debate when attempts are made to define it

precisely; Stroustrup’s version [125] pins it down accurately enough:

1. Keep the built-in operations close to the machine (and efficient).
2. Keep the built-in data types close to the machine (and efficient).
3. No built-in operations on composite objects.

4. Do not do in the language what can be done in a library.

5. The standard library can be written in the language itself.

6. Trust the programmer.



7. The compiler is simple.
8. The run-time support is very simple.

9. In principle, the language is type safe, but not automatically checked (there
was lint for that).

10. The language is not perfect because practical concerns are taken seriously.

This describes the language that is described in [78]. C acquired more constructs
(structure assignment —which to some extent violates point 3 in the list above-,
enumerations and void), after an unsuccessful attempt by Ken Thompson to rewrite
Unix, which is the often-told “trial by fire” of C as a language for programming-
in-the-large. This later version of the language is called by Stroustrup “Classic C”
[125]. In a process closely overseen by Ritchie, the language was enriched with more
types (long and unsigned), Algol 60-style unions, casts, and structs came close
to becoming first-class objects (lacking only literals, which would be later added
by the C99 standard), and areas of the language were refined, e.g., the relationship

between structure pointers and the structures they point to was strengthened.

C spread out in industry and education so quickly and successfully (thanks
in no small part to the availability of a portable compiler pcc), that the need to
strictly define it, was soon apparent. A committee was formed and The ANSI C
standard (X3.159-1989) was ratified in December 1989 (although technically it was
completed a year earlier). Its charter was aimed more at defining the language
with minimal impact to working code than to fix any troublespots. It did fix some
troublespots with the introduction of function prototypes, float as a data type and
the const keyword, allowing a modicum of independence from the preprocessor. An
ISO C standard followed, but it was in effect equivalent to that accepted by ANSI.
In 1992 the ANSI standard was officially withdrawn, as control of the C standard
passed from ANSI to ISO, so that now there is a single standard, managed by an

international body.

As per these standardization bodies’ regulations, starting in 1995 the standard
went through a revision process, which yielded the recent C99 standard. A major

driving force in this document was the Numerical C Extensions Group, whose intent

7



was to make C a language more suited and appealing to the scientific computation
community (boolean and complex types were added, Fortran-style variable-length

arrays, more mathematical functions and macros)

Figure 1.1 shows a number of languages and their respective influences, and more
importantly, the effect they had on the development and evolution of C. As can be
seen, C obtained much of its design and many features from its ancestor language
CPL [15]. What the diagram does not show exactly is that the later versions of
the language are strictly upward compatible, but lack some backward compatibility
[70]. Also missing in the diagram is that the influence of Algol and BCPL transcends
a mere particular language design, but represents a school of thought advocating
that the design of programming languages should be more influenced by the use
the programmers put it to than a particular approach to programming thought
best by its designers. The C design process was never too detached from this goal,
both in implementation and through its user community. (As opposed to Algol
60/68, where the languages were completely designed, and standardized before an
implementation was even attempted.) This school of programming language design
was called by Richard Gabriel the “Worse is Better” approach [56], and it states
that software should start small and evolve according to the needs of its users.
Software designed this way, says Gabriel, has a better chance of survival, if perhaps
with a diminished aesthetic appeal. In fact, Dennis Ritchie credited this particular
design (along with tool availability, right timing and luck) with the success of the
language [106].

1.2.1 Swuccess of C

C in its various forms is an enormously successful language. Its portability, terse-
ness, minimal requirements on the run-time system, emphasis on performance and
implicit trust in the programmer has made it a favorite among programmers, and
(until comparatively recent times) the language of choice where large projects were
concerned. Testimonials of this success are the large user-base, huge corpus of code
and abundant literature that both focuses on the language or uses it as the medium

to introduce programming concepts.



Algol 68

| Algol 60]
T PL/1]
BCPL

Objective C

C with Classes

Figure 1.1: The evolution of C and its major influences



Timing was of course an important factor for the widespread acceptance of the
language. The success of Unix made C available to hundreds of thousands of people.
Conversely, Unix’s use of C and its portability to a wide variety of machines was
important in the system’s success. Fortunately, C and its central library support
has always remained in touch with the real environment, which made its transition
to platforms other than Unix a relatively easy one. In the words of Ritchie, “[C]
was not designed in isolation to prove a point, or to serve as an example, but as a
tool to write programs that did useful things; it was always meant to interact with

a larger operating system, and was regarded as a tool to build larger tools” [108].

Regardless of the changes mentioned in the previous section, C has remained
comparatively stable through a large user-base in a wide variety of environments
and with a diversity of compilers. This stability did not prevent a number of dialects
from appearing (of particular importance to this document is the one used by the
GNU Project’s C compiler, gcc), such as the addition of the qualifiers far and near

for the Intel segmented architecture.

In contrast to natural languages, the success of a programming language is not
measured only by the size of its user-base or amount of code written in it, but
along other dimensions: such as expressiveness, reliability, portability, extensibility
and support from its environment, among other criteria. The design of C strikes a

balance of all these considerations, a balance that is both acceptable and appealing.

Again, citing Ritchie: “C is quirky, flawed, and an enormous success. Although
accidents in history surely helped, it evidently satisfied a need for a system imple-
mentation language efficient enough to displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and interactions in a wide variety of

environments.”.

While Ritchie has a modest view of things, another commentator, Richard P.
Gabriel was more emphatic: “Right now, the history of programming languages is

at an end, and the last programming language is C”.
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1.2.2 C and CH++

Stroustrup intended C++ to be a strict superset of the C language, as C was circa
1980, extending the core language with a stricter type system, some modularity,
better data abstraction mechanisms, exception handling, and a number of other
features that took care of some of C’s more obvious shortcomings [51]. However, the
fundamental goal of trying to make high-level paradigms, such as object-oriented
programming, coexist and cross-fertilize with other (much lower-level) constructs
and programming styles was deemed by some self-defeating. Not only that, but the
burden of backwards-compatibility meant that some of the undesirable C features
made it into C++, too.

C++ acceptance has been impressive. It is so popular now that the C Standards
Committee had to explicitly deny that C++ is the future of C. It is clear now that
the languages are following divergent paths. The difference is obvious from the way
the languages are evolving: while C is adding more types to the language, C++ is

working on its library, using the already-in-place abstraction mechanisms.

1.3 C’s shortcomings

As widely accepted and technically remarkable as C is, it has a number of shortcom-
ings in several respects and which need addressing with varying degrees of urgency.
These deficiencies are only to be expected, since it is a language that has tran-
scended its originally intended domain of systems programming and has become a

general-purpose language.

The most-often (and loudest) voiced criticisms against C are directed towards
its lack of readability, which diminishes programmer productivity. With respect
to readability, C has a number of inconsistencies, for example, unrelated meanings
of the same form (meaning of static when it appears in and outside a function,
the pointer interpretation of array names, the overloaded break, or subtle varia-
tions between initializers and assignment expressions), much too low-level pointer

semantics (as opposed to, for example, Bliss’s or Algol’s), and several instances

11



where confusing syntax trips up beginners and experts alike. For example, an awk-
ward type declaration syntax, derived from Algol 68’s type composition scheme

(although most of Algol’s adherents would cringe at the thought).

It has been pointed out that a person conversant in the way computers work
and reasonably familiar with computer architecture can immediately make sense
of most of C. This quick grasp is even more noticeable in programmers with some
experience in compiler writing. It is not out of the question that, at least to
some extent, the semantics of the language were motivated by the compiler design,
and, what is more, by the compiler technology and programming practices at the
time of C’s inception [92]. Examples of this abound: the programmer must be
aware of what is a compile- and a run-time constant, and C is overly fond of side-
effects in expressions (where most programmers trained in other languages, assume

expressions denote only values).

The practice of delegating as much as possible to the library (point 4 in the
“spirit of C” above) works reasonably well for a number of tasks and subsystems
(input/output, for example, where it enhances the portability of the language as a
whole), but it seems there are times when the same strategy does not work as well,
as is the case with the simulation of several control structures such as exceptions,
coroutines, procedure closures, and in particular, concurrency [24], where it has
been shown that these abstractions cannot be incorporated into a language via
libraries. Furthermore, the restriction imposed by point 5, that language libraries
must be written in C, seems overly strict since most modern compilers are able to
incorporate procedures written in a different languages, and most modern languages

incorporate a “foreign function” interfacing mechanisms.

Another area that needs to be partially resolved within the language, as opposed
to a library, is string manipulation. Due to its origins in the systems programming
world, C does not offer strong support for character data. The language treats
strings like fixed-length arrays of integers (chars), with the added guarantee that
string literals are terminated with a null character (which therefore can not be

contained within a string)'. Other than that, C leaves all string processing to

!The delimited-string approach in C differs from ancestor BCPL, which uses a length-field.

12



libraries, and the memory management implied by the manipulation of varying-
length strings to the programmer. C’s abstraction mechanisms are not powerful
enough for the programmer or the library to do a thorough job in either case, since
they cannot provide their own copy and assignment operations for specific types.
The lack of these operations often results in errors in the use of library functions,
which, in the case of the standard string-manipulation and formatted input/output
libraries, can lead to pernicious (inadvertent or otherwise) access to the memory
regions, in the form of type unsafety or buffer overruns, for example. This problem
is detrimental to the overall safety and reliability of the system, particularly in
today’s computing landscape, where text processing shares some of the dominance

that was previously the provenance of numerical computing.

Another problematic area is C’s lack of modularity. Modularity is one of the
program structuring concepts that, along with data abstraction, was introduced in
the 70s, and since then has gained importance as it affects favorably the mainten-
ability of a programming project. C’s support for modularity is minimal, which
forces programmers to simulate it by distributing their code over files! containing
preprocessor directives that guide the reassembly of the compilation unit, and then
rely on external tools, like Unix make for file dependencies and consistency of the
project. This approach is a partial solution at best, since more sophisticated de-
vices, like selective imports or exports, data protection in the form of public/private
specifications, name collision resolution and all but the more basic data abstraction
lie beyond the preprocessor and linker’s capabilities. Both the lack of language con-
structs (such as namespaces, modules and a way to export entities from them while
protecting the rest of the code within) and the insufficient preprocessing solution

have been widely criticized [93].

This omission is evidence to the fact that execution environments, compiler
technology, and coding style (the definition of a good program, the abstractions
considered building blocks for good programs, etc.) current at the time (1970s)

permeated C’s design. Many of these ideas and techniques have since been sur-

1C essentialy implements a module with two files, a header containing constants, types and function
prototypes, and an implementation file, providing the function bodies, and perhaps static global
variables and internal functions.
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passed and the older approaches are now deprecated. This does not mean that
code of the highest quality, conforming with one or more of the so-called mod-
ern programming paradigms and meeting software engineering requirements in use
today can not be written in C. To do so, however, strict adherence to coding conven-
tions is required; but this discipline is not linguistically enforced [93], and therefore,
there is no help from the compiler. Hence, even minor deviations from the conven-
tions, either malicious or unsuspecting, make it very difficult for the paradigm to

be maintained.

Finally, it is important to mention another source of users’ dissatisfaction with
the language. C is been used for a wide variety of purposes, some of which fall
outside its original sphere of application. For example, as the first programming
language, that is, the expository medium through which incipient programmers are
taught about basic concepts of Computer Science. As remarkably adaptible as C
has proven to be, sometimes even thriving in these unforeseen domains, being a
teaching vehicle is not C’s strongest suit. CV extends C with features that ease this
role somewhat, such as a more straightforward declaration syntax. However, it is
by no means the case that the CV project intends to address all such objections in

all programming niches.

1.4 CV project

The CV project charter is twofold:

1. fix C’s shortcomings

2. add to C modern programming language features

These changes must be made in such a way that they preserve, from the practical
point of view, backwards compatibility with C, and from the philosophical one,
“C’s spirit”: a small and simple language that allows unrestricted access to the
underlying architecture and which requires a minimal run-time environment. In
this respect, the CV project shares the aims of the C99 standardization commit-

tee, in that it “attempted to incorporate valuable new ideas without disrupting the
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| C with Classes |

C99

Figure 1.2: Notable influences on CV

basic structure and fabric of the language. It tried to develop a clear and consis-
tent language without invalidating existing programs” [31]. The difference resides
in what sort of “new ideas” these projects incorporate: whereas in Standard C
the main focus was on numerical extensions, internationalization and foreign lan-
guage interfaces, CV is not conservative with its additions and modifications, and
the introduction of abstraction mechanisms, such as parametric polymorphism, or
control structures and patterns, such as exception handling, tuples and functions
returning multiple values set the pace for the modifications to the language. Not
all these features are new, and their ancestry can be traced in the programming
language literature to the 70s (in the case of exceptions, for example). A diagram

of the languages that are most influential in the design of CV is shown in figure 1.2.

Ever from the inception of C, a great many projects have had the stated purpose
of extending that language in a variety of ways and catering to different application

domains. However, it is hard to comply with the “spirit of C” as stated above, espe-
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cially when new abstraction mechanisms are incorporated into the language. Take,
for example, C++, whose object-oriented mechanisms for C have been described
as an attempt to graft a high-level abstraction mechanism to a much lower-level

language, an inherent philosophical clash.

The CV approach is different: first it rebuilds the C type system, subsuming C’s
semantics of expressions, while providing parametric polymorphism and overload-
ing. This type system was designed and described by Glen Ditchfield [47] in 1994.
In 2003, Richard Bilson implemented a translator that incorporates Ditchfield’s
type system, with several extensions [16]. Of relevance to this work is the analysis
of expressions involving functions returning multiple values. With this translator

as a base, the features described in the present work are introduced.

Contributions of the thesis

The fundamental contribution of this thesis is to make the popular C program-
ming language easier to use and more expressive. While several of the features
described in this thesis are similar to those in prior work, their incorporation into
CV’s more complicated type system involved significant differences in design. As
well, the mechanisms for implementation of these features from prior work were
often not amenable to approaches and techniques used in CV and therefore had to

be reimplemented.

For example, tuples and their comcomitant operations are derived from those in
the forerunner KW-C project [131]. However, adding tuples to C is different from
adding them to CV, given the latter’s overloading capabilities. Operations like KW-
C’s multiple and mass assignment, although similar in form in CV, have different
effects (§4.2). Also, although KW-C tuples imply the notion of functions return-
ing multiple values, their utility is limited by the need to “unpack” the returning
values into receiving temporaries, which is cumbersome when functions calls are
to be composed. This work removed this limitation, and a novel concept of tuple
designation was added to allow for the expression of function composition patterns
that are not found in other programming languages (§4.2.3). From these exten-

sions, several other natural features were designed and implemented, e.g., named
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or keyword parameters, default values for arguments, and named return values.
Although these latter features are not original, they have proven their usefulness
in other programming languages, and their inclusion in CV was deemed desirable.
I extended Bilson’s expression analysis algorithm to encompass these new forms of

argument passing and provided a complete translation into Standard C.

CV also incorporates other existing C programming constructs subtly modified
by this work to enhance usage and prevent misuse. Among these are the variations
on C’s control structures (Chapter 3), viz. loops with multiple-level exits, lists and
ranges as case guards, and a version of switch without default falling through
cases. | have also added features to CV, blending ideas from other programming
languages. One critically important control structure mechanism missing from C
is exception handling. This work added traditional termination exception handling
semantics and the more controversial resumption semantics from its forerunner,
Cedar. Also, I have designed and implemented a new mechanism for Ada-like
attributes that integrates well into the existing syntax and semantics of CV (Chapter
5).

While adding all these features to CV, this work strove to remain within the
confines of the “spirit of C” (in particular point 8, above). This constraint markedly
separates CV from the most visible C variants, Java and C#, and places it within the
group of languages that extend C while remaining (mostly) backwards-compatible
(some of which are described in the next section). Unfortunately, complete backwards-
compatibility is seldom obtainable, and CV specifically violates this goal to fix some
very questionable features in C. An interesting experiment was designed and per-
formed to assess the effect of all the incompatible changes in CV (Chapter 6). The
experiment scans a non-trivial body of representative C programs to determine if
the incompatible changes introduced in this work have any practical ramifications,
i.e., estimate how much real legacy C code would have to be modified to work with

CV. The results of the experiment indicate that very few incompatibilities do occur.
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1.4.1 Related work

Narain Gehani is the force behind several dialects of C (C with exceptions, Con-
current C), that extended the language by adding, first exceptions and then con-
currency. He made no attempt to fix any existing problems in the language. A
similar effort was made by Timothy Budd in Oregon State, who added Icon-style
generators to C, and called the blend Cg. Cox’s Objective C [38] is an attempt to
enriching the C type system with object-oriented constructs. C++ had the same

goal, and has already been discussed.

Cyclone [127] places a lot of emphasis on safety. As such, it extends the C run-
time environment (it provides “fat pointers” and array subscript checks), introduces
region-based (but still manual) memory management and a more strict type system.
These extensions prevent errors common in C programs, such as buffer overflows®.
Its syntactic extensions include exceptions, namespaces, parametric polymorphism

and tagged unions.

A number of compilers (commercial and otherwise) extend the language in some
ways. gcc’s extensions have been mentioned already and are discussed in more
detail in the remainder of this thesis. Pike and Thompson’s C compiler for Plan 9
[99] provides structure displays (a way to form struct expressions dynamically). It
also makes anonymous nested structs or unions in structs “transparent”, so that

programmers can refer to members of the inner construct.

It is worth mentioning that the original designer of C was working on a new
programming language called Limbo [77] that, although strongly influenced by C,
is not backwards-compatible and it changes a number of features, for example,
it dispenses with the C-style declaration syntax and adopted Pascal’s. It also
incorporates a much complicated runtime system, which includes garbage collection,
bounds checking and concurrency. This is more a continuous exploration of the
programming language design space on their part, and by no means an implicit

dismissal of C.

LOf course, these problems are not exclusive to programs written in C, but there are features in
the language —e.g., pointer arithmetic and unchecked subscripting— that make it easier for the
programmer to cause problems, and they go largely unchecked.
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1.5 CV translator

1.5.1 Black box view

Many descendants of C have been prototyped as preprocessing translators. This
particular kind of translator can be described as a compiler front-end: a program
that does the lexical, syntactical and semantical analyses and whose output is high-

level language program text, in this case C.

This approach has several advantages over building a full-fledged native com-
piler, such as portability, possibility of interfacing with different optimizers, quicker
detection of errors, and several possibilities that the use of one-pass compilers pre-
cluded.The strategy is particularly appealing if the output language is C, which
has proven to be effective as an “universal intermediate representation” of sorts.
Most importantly, a translator of an extended language to the language it extends

is significantly simpler to construct.

Of course, this comes at the cost of a slight degradation in performance when
compared to a native compiler. Furthermore, if not enough information is passed to
the output program, the capability of symbolically debugging the original program

is also diminished.

However, there are language features that simply cannot translate directly to the
target language, or that translate only partially. For example, exception handling
had to be done in the most straightforward of ways since the translator has no access
to lower level information, in particular the addresses in memory a particular block

of code occupies when translated to machine language.

1.5.2 Functional description

C was originally designed with a bottom-up compilation model: no intermediate

representation is necessary and the code can be generated as soon as possible !. The

! As opposed to other languages, for example Ada, where the assumed compilation model depends
on a tree representation.
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more elaborate mechanisms introduced in CV preclude this mode of operation, and a
staged translation is required. The parser constructs an intermediate representation

that is later traversed in various ways until finally the code is generated.

Two intermediate representations of the program are built. The first is closely
tied to the grammar of the language, and more amenable to reflect future modifi-
cations. To some extent, it also reflects the development tools used (flex, bison,
etc.) and the at times awkward interaction with one another (e.g., C++ STL and

bison).

Once the building of this representation is completed, a second representation,
modelling the semantics of the language more closely (in effect, an Abstract Syn-
tax Tree), is constructed. Once this second structure is in place, the translation
process is carried out by several passes that rewrite sections of the AST. Some of
these rewriting passes are described in much greater detail in the remainder of this

document.

After all these rewriting passes have been completed, what remains (for a valid
CV program) is the AST of a C program, which can then be mapped to a string
that is the output of the translator. A driver takes this output and, then feeds it

to the compiler, along with a number of compiler flags.
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Chapter 2
Declaration Syntax

Ever since Algol introduced the concept of declaration of objects in a program®,
and that these declarations are decorated by the type of the object, a sublanguage
for type description had to be incorporated into programming languages. In most
languages, starting with Algol W and Algol 68, type specifications are built incre-
mentally from a collection of primitive or basic types by the (repeated) application

of type constructors.

In C, declarations are composed of two parts, the base type and a declarator,
which includes the name of the entity. If an object is not of a built-in type, a de-
scription of the type is provided in its declaration, and this description is composed
of basic types, type synonyms (introduced via typedef) and constructed types.
Type constructors include a pointer constructor (*), that takes a type as argument;
an array([]) constructor that takes a type and possibly a dimension specification;
a function constructor that takes a return type and a list of parameter types; the
record constructor (struct) and the undiscriminated disjoint union constructor
(union), that take list of types as members, together with a name for each of them;
or enumeration constructors (enum), that takes a list of enumeration constants. A
type specification might be further adorned with qualifiers (in C99 const, restrict

and volatile). Finally, a declaration can be further adorned with one of six storage

!The C standard [6] uses the word “object” to denote a region of memory containing a value, as
opposed to other interpretations in the context of different programming paradigms.
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classes: auto, extern, register, static, inline and fortran. Any combination is

allowed as long as it makes some sense.

Throughout the course of its evolution, C’s declaration syntax has changed
somewhat. In its first incarnation, and all the way through the version described in
the first edition of K&R, C did not require the specification of the base type of an
object, nor did it require specifications for the return type or number of arguments
in a function. Where applicable, these objects’ type was considered to be int by
default:

X; // same as int x
X; // same as int *x;
foo(p); // int foo( int p );
foo(x,y) // K&R old-style function declaration
int xy {
// same as int foo(int z, int y)

Pointers were declared exclusively using the array constructor rather than a star
[107]):

int ip[]; // instead of int *ip;

a notation that survives to this day in a vestigial form in argument declarations.
C89 introduced type specifiers (const and volatile), function prototypes (that
allowed programmers to specify the argument types in a function declaration, rather
than in a function definition) and some additional qualifiers (e.g., unsigned). C99
deprecated the interpretation of missing base types meaning int, and incorporated

more primitive types and the restrict qualifier.

Unfortunately, these alterations have done little or nothing to change the fact
that the declaration syntax of C is one of the most often voiced complaints about

the language.
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2.1 C Declaration Syntax

C is a direct descendant of B, B of BCPL, and BCPL of CPL (figure 1.1). CPL
has a design so ambitious that it was not entirely implemented. BCPL (Basic
CPL) restricted CPL in several ways, one of which was to substitute the diversity
of types with a single one, the word. B further scaled down BCPL, specializing it
for systems programming. Because of BCPL’s word-based system was insufficient
for the purposes of Thompson and Ritchie, C adopted parts of CPL’s type system,
albeit in a different guise. In particular, C’s declaration syntax is original and

completely different from CPL’s (which follows Algol’s).

C’s choice of syntax for declarations is based on the idea that the declaration
of an entity should look like the use of that entity in an expression. To this effect,
tokens denoting operators are recycled in a declaration context to adorn base types
and entities. Although this design complicates the parsing of the language!, the
symmetry between declaration and use was considered by the inventors worth the

trouble.

At a first glance, this schema is both elegant and effective, consider:

Description Declaration Use
int variable int x X
pointer to an int int *x *x

/* dereference */
array of 10 ints int x[10] x[5]

/*subscript */

function taking and return- | int foo(int) foo(x)
ing an int
function taking an int and | int *foo(int) *foo(x)
returning a pointer to an int

/* dereference */

!'When parsing bottom-up, it is unclear, upon encountering a type constructor token, whether
the correct parse tree results in an expression or a declaration, and more context information is
needed.
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However, this approach breaks down as more complicated objects, combining

arrays, pointers and functions, are used:

Description Declaration Use
array of ten pointers int *i[10] *i[5]
to int

/* subscript binds tighter */
pointer to array of ten | int (*pi)[10] (*pi)[5]

int
/* deref and then subscript */

pointer to a function int (*pf)() (*pf)()
returning an int
array of pointers to | int (*apf[10])() (*apf[5])()

functions  returning

int

When both post- and prefix type constructors are used, a declaration specifica-
tion is layered (like an onion) around the object name, and is read from the inside
out. However, this rule of thumb does not begin to clarify declarations like the ones

presented above.

The use of type synonyms introduced via typedef can ameliorate to some extent
the need for complicated type declarations by allowing the incremental construction
of the desired type ([39]):

typedef char fch(); // function returning a char

typedef fch *pfch; // pointer to function returning char

typedef pfch *apfch[10]; // array of pointer to function returning char
typedef apfch *papfch; // pointer to an array of pointers to functions. ..

This is, at best, only a partial solution to the problem, especially when type quali-

fiers and storage classes are brought into play. Type qualifiers and storage classes
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can appear in many orders. The next lines all describe the same object:

const int volatile x;
int volatile const x;

const volatile int x;

In fact, any of the seven possible versions of a qualified type is valid, although
objects declared with different versions are incompatible with each other and with
the unqualified type. Type qualification is only relevant in a lvalue context, that
is, when an object with qualified type appears on the left side of an assignment or
in the parameter list of a function prototype. In most other cases, a qualification

in any other position is dropped. For example, the following is valid:

void bar( const int x );

void foo() {
volatile int vcpi;
bar(vcpi);

}

Syntactically, the type qualifier const presents particular difficulties when cou-
pled with pointer variables. Since a pointer declaration describes what type the
identifier is supposed to point to, it actually refers to two entities: the identifier

and the entity it points at, either of which can be used in an lvalue context.

int const *pi;
const int *pi;
int * const pi;
const int * const pi;

int const * const pi;

The first two lines describe the same object, a pointer that points to a const int,
that is, the pointee is not to change (in other words, any dereference of the pointer
in a lvalue position is invalid). The next line describes a pointer that cannot point

to a different target (direct assignment and modifying pointer arithmetic, therefore,
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is forbidden, but an assignment to the dereference is allowed). Finally, the last two
lines, describe a pointer that cannot change its target nor can it assign to the object

it points to.

It is debatable how much the “declaration mimics usage” policy is to blame for
how error prone the notation turned out to be. Another factor that compounded
the confusion is the existence of prefix and postfix type constructors, that can be
combined in various ways. This has been deplored by Dennis Ritchie himself *,
who recognized that several syntactic and lexical mechanisms of CPL, including

procedure and data declarations, are more elegant and regular than those in C.

Another problem comes from the possibility of declaring more than one object
in the same declaration statement, but only the base type is distributed across all

variables:

int* x, y; // x is a pointer, y is an int

int *x, *y; // two pointers to int

Beginner programmers, and even experienced ones with some familiarity with Pas-
cal descendants are often surprised to discover the meaning of declarations like the
above, especially since errors are not issued by the compiler until inappropriate

application of an operator, potentially far removed from the declaration itself.

In conclusion, C declaration syntax is fraught with complications, which still

trip even experienced programmers?. These complications are so fundamental that

'Ritchie has suggested that the declaration syntax would have worked much better had the in-
direction operator been postfix rather than prefix. In Pascal, where declaration syntax is not
consistent with usage, pointers look like:

var iptr : “integer;
new(iptr);
iptr ~ := 10;

writeln(’the value is ?, iptr~ );
dispose(iptr);

2Even specialized tools, like cdecl, that translate a C declaration into English and viceversa have
been developed.
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successive revisions of the language have not solved the problem. A more radical

change thereto is necessary.

2.2 CV Declarations

Till [131] constructed the first implementation of an extended declaration syntax;
however, this implementation required several additional keywords to disambiguate
the grammar. Buhr et al [26] constructed the second implementation but still re-
quired one additional keyword for disambiguation. In CV, I eliminated all super-
fluous keywords previously needed, and extended the CV declaration grammar to
incorporate the new declaration syntax among the other polymorphic extensions in

declarations.

CV provides simpler type, variable, and function declarations. All the tokens
denoting type constructors and their meaning are retained, but they are all prefix

and right-associative. This greatly simplifies complicated declarations:

Description C Cv
int variable int x int x
pointer to an int int *x *int x
array of 10 ints int x[10] [10] int x

function taking and return-

ing an int

int foo(int)

[int] foo(int)

function taking an int and

returning a pointer

int *foo(int)

[int *]foo(int)

array of ten pointers to int

int *x[10]

[10] * int x

pointer to array of ten int

int (*pi)[10]

*[10] pi

pointer to a function return-

ing an int

int (*pf)()

* [int]() pf

array of pointers to func-

tions returning int

int (*apf[10])()

[10] *[int]() apf

array of pointers to func-

tions

int (*(*papf)[10])()

* [10] *[int]() papf
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Even the most complicated declarations can now be read left to right with-
out complex binding rules to remember, and without having to resort to auxiliary
typedefs.

Qualifiers and storage classes are placed to the left of the base type, but are

otherwise used in the normal way with the new declarations:

Description C Cv
const pointer to int const * const x const * const int x
const int

const  pointer | const int ( * const pai)[ 10 | | const * [ 10 ] const int pai
to array of 10

const int

extern array of int extern ai[ 10 | extern [ 10 | int ai;
10 ints

static pointer to const int static * pi static * const int pi
const int

When declaring multiple entities, the entire type specification is distributed

across all variables in the declaration list:
*int %, y; // two pointers to int

* [10] * int x1, y1; // two pointers to array of pointers to int

Note that in CV a function return type is enclosed in square brackets, and that
an empty parameter list denotes a function taking no parameters (as in C++)

whereas in C the same notation means an unspecified number of parameters.

[1s(); // void function taking no arguments
[int] f(); // function returning int taking no arguments
[char,int] f(); // function returning a tuple (cfr. chapter 4)

Finally, declaration qualifiers and storage classes are only allowed to appear at
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the start of a CV routine declaration':

extern [ int x ] g( int y ) {}

Different styles of type specification can be used in separate declaration state-
ments (but not intermixed in the same declaration), even in the same block of code.
Likewise, either style can be used in any context that requires a type specification,
for example, a cast, sizeof, or typeof contexts. The only case where intermixing
of declaration styles in the same declaration is allowed is declaration of function

return and parameter lists of CV-style functions:

[int (*x)[10] ] f( int (*y) [10] ); // C-style return and parameter declarations
[* [10] int x] g( * [10] int y ); // CV-style return and parameter declarations

This exception allows backwards compatibility with old-style macros generating C

declarations, e.g.:

#define ptoa( n, d ) int (*n)[d]
[ ptoa(x,10) ] f( ptoa(y,10) );

In general, intermixing declarations styles is neither recommended nor sup-
ported, as this practice tends to compromise clarity. It is hoped programmers

(especially new ones) will prefer CV’s declaration style to C’s.

CV-style declarations are rewritten during parsing to their equivalent C forms,
which means that the use of either form of declarations does not affect performance

in any way.

1C99 has adopted the same rule and deprecated alternate usage. It is, of course, up to time to
determine how effective this policy will be, but due to the extant legacy code, it is safe to say
that it is hopeless.
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2.3 Related work

C’s syntax for declarations has been the constant source of complaints and a sig-
nificant number of reengineering efforts have gone into making the sublanguage
more readable, for example by Anderson [10] and Sethi[112]. Sethi’s proposal is
notable because he made the indirection operator postfix. The style of declara-
tions this modified syntax allows is much clearer than C’s (in Sethi’s proposal, the

indirection operator, denoted in C by * is written ~):

char (* (*}[3])())[5]; // C
char x[3]~()"[5]; // Sethi
[3] * [ * [5] char ] () x; // C¥

Sethi’s syntax is clearly more readable than C’s, and probably just as clear as CV’s.
Interestingly, it still allows a programmer to reuse the “char” at the beginning of

the declaration for subsequent declarations, in the form:
char x[3]*()"[5], y~[5], z

However, the distance between the type specifier and the second and third variables

is large, and not conducive to clarity. CV does not suffer from this problem.

Several other attempts have been made to fix C’s declaration syntax, which
some subsequent languages inherited. For example, Werther et al. [135] suggest

~

changing the C++ syntax declaration, to not only incorporate Pascal’s = pointer
constructor, but also ML’s function type constructor —>. CV’s solution requires

less syntactic innovations, while attaining the same clarity of expression.
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Chapter 3
Control Structures

Like most imperative languages, C includes the traditional control structures of un-
conditional jumps, conditional branching and selection, and looping, largely derived
from those in BCPL and Algol. CV follows suit, but it introduces some variations
in the interests of program readability and maintainability. This chapter describes
how [ augmented CV’s control flow by fixing and extending existing C constructs
and adding new ones. Further changes in control-transferring mechanisms, specifi-

cally function calling, are described in following chapters.

3.1 Multi-level exits

The structured programming school introduced the notion that certain code struc-
tures, e.g. loops and subroutines, should have only one entry and one exit. While
the one-entry restriction seems logical and has remained largely uncontested, expe-
rience suggests that having multiple exit points is useful and sometimes necessary.
In fact, many programmers simulate multiple exit points by testing a multitude of
logical flags, resulting in code that is so difficult to read and maintain that these
use of flags is often considered the data equivalent to the unstructured use of the

goto statement.

To alleviate this problem, language designers have provided facilities to exit

loops and functions at different points. In C, these facilities take the form of the
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register t; register t;

t := head; t := head;
while (t := ..t) _ 0 do I: while (t := ..t) - 0 do
while (t := ..t) - 0 do while (t := ..t) - 0 do
if .(t + 1) - 0 then exitloop[2] .t if .(.t + 1) _ 0 then leave | with .t
(a) Numbered exit (b) Labeled exit

Figure 3.1: Multilevel exit in Bliss

statements break and continue for loops, and return for functions. continue is
valid only inside a loop and when encountered causes the current loop iteration to
terminate and control flow transfers to the beginning of the closest enclosing loop
to start a new iteration. break can be used in a similar fashion, with the sole
difference that all loop iterations are terminated and control flow transfers past the

end of the closest enclosing loop. Buhr [23] calls this construct a multi-exit loop.

However, a C multi-exit loop is limited in the sense that it is restricted to the
closest enclosing loop. A generalization of this capability is a static multi-level
exit, which allows transfering out of a multiple nested construct to a statically
determined location. Bliss [140], a systems programming language designed at
CMU in the 70s and no longer in use, contains the equivalent to C’s unqualified
break (of the form exitloop!), as well as a multi-level exit statement of the form
exitloop[n], where the parameter n indicates the number of control structures to
be exited from. This construct is understandably hard to maintain, since adding
or removing nested control structures required updating all the occurrences of n.
Later versions of the language allowed the loops to be labeled (see Figure 3.1).
Peterson et al. [97] discuss the capabilities of similar constructs in extenso.

Ada [48] combined both forms by allowing exit statements to explicitly specify
the enclosing control structure out of which control is to transfer; if the label is
missing, the innermost control structure body is assumed. Several programming

languages (e.g., Java and Perl) adopted this construct. Examples of this device can

lexitloop takes an optional return value, since control structures in Bliss are expressions, rather
than statements.
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Outer:
for | in Where’Range loop
for J in Where(l)’Range loop
—— single-level break

OUTER: foreach $i (@where) {
foreach $j (@{$i}) {
# single-level break

last if $§j == -1, ]
e o ] exit when Where(l)(J) = —1;
) last OUTER if $j == $what; exit Outer when Where(1)(J) = What;
) end loop;
end loop;
(a) Perl

(b) Ada

Figure 3.2: Multilevel break

be seen in figure 3.2. As well, languages like Java and C# allow for general blocks
(i.e., those that are not the body of a looping construct) to be labeled and referred

to by multi-level exit statements.

CV adopts C’s looping constructs unchanged, and extends them to the more
general scheme of Java and C#. This is, labels identifying a block can be used
in a break statement to transfer control to the instruction immediately following
the end of the block. Loop statements can also be labeled and the behaviour is
equivalent to the loop block being labeled. Also, continue statements within a

loop can refer to these labels to immediately proceed to the next iteration.

In effect, all of these constructs are a restricted forms of goto. They allow only
branching to the beginning and the end of enclosing control structures, and therefore
cannot be used to create cycles in the control graph. In this way, construction of
loops is restricted to the language loop statements, and a legitimate use of goto
[81] is given a new syntactic form. The CV translator makes use of the lower-level
goto to implement these extended control structures, as can be seen in figure 3.3.
Notice that a continue or break referencing the closest enclosing loop or switch

is not transformed into a goto.
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Block: { _Lo__: {
Loopl: for (i =0;i < 10; i +=1){ __L3__: for (i=0;i<10;i+=1) {
Loop2: for (i =0;i < 10;i +=1){ __L2__: for (i=0;i<10;i+=1) {

Switch: switch (i) { __L1__: switch (i) {
case 1: case 1:
if (i<b5){ if (i<5) {
continue Loopl; goto __L5__;
continue Loop2; continue;
continue; continue;
break Block; goto __L6__;
break Loopl; goto __L7__;
break Loop2; break;
break Switch; goto __L4__;
Y/ Y/
Y // switch
+ /) for ;
+ // for __L4__: break;
} // block } // switch
+ // for
__L5__: /* null statement */ ;
+// for
__L7__: /* null statement */ ;
} // block

__L6__: /* null statement */;

Figure 3.3: Multilevel exit in CV(left) and C translation (right)
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3.2 Selection statements

An often-encountered need during programming is to pick out one course of action
among several (excluding all others). Characteristically, programming language de-
signers went about providing for this necessity by successive approximations: first
there was the two-way selection statement or expression, almost universally taking
the form of an if. This simple binary branching can be scaled to an arbitrary
number of cases/actions by nesting or cascading if-then-else statements. When
cascaded, the number of if-guards or test conditions often correspond to mutually
exclusive (and presumably non-overlapping) alternatives. Several proposals to pro-

vide some syntactic sugaring to such a programming artifact have been advanced.

If the test is on the same variable or expression (and this is of an ordinal type),
writing the condition repeatedly is tedious, and often introduces mistakes. C.A.R.
Hoare! introduced the multiway branching statement in Algol, called a case state-
ment, which is considered a better solution to the above problem, as it is more

readable and less prone to mistyping of the condition.

Most languages offer a form of the multi-way selection statement (switch in
the C-family, or case in Pascal’s descendents, for example), with some variations,
mostly in the kind of expressions that can be used to label the cases (lists of values,
ranges, even full-fledged predicates). Different types of guarded expressions have
also been extensively experimented with (Unix shells, to cite an extreme example,
offer a combination of a string test expression and regular expression patterns as

case labels).

The form this statement has taken in C has been widely criticized, and it is
often listed among the most annoying and dangerous characteristics of the lan-
guage. Originally inherited from BCPL [106], it took a somewhat idiosyncratic
bent when “falling through” case clauses was made the default behaviour. In most
other languages, the execution of the code associated with a particular case clause

precludes the execution of any other clause in the same switch statement. In par-

'Hoare said of this construct “This [the case statement] was my first programming language
invention, of which I am still most proud, since it appears to bear no trace of compensating
disadvantage” [66].
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ticular, during the execution of a case clause, the presence of the following case
clause indicates the completion of the action triggered by the alternative and the
transfer of control to the next statement after the switch statement. In C, the
programmer has to explicitly indicate this transfer by inserting a break statement
to exit the switch statement. The rationale behind this design is that it makes
up for the lack of ranges and more complex expressions in case labels, but it is a
decision that still baffles beginners (especially if they have been exposed to other

languages with different semantics).

The overloaded use of the name break (used both to exit switch and loop
statements) does not help matters either. In the interest of minimalism (or probably
as a result of his using an outdated BCPL manual [106]) Ritchie decided to reuse
the keyword break rather than introduce another (BCPL settled for the keyword
endcase). This decision has proven to be unfortunate, as it leads to errors, an
extreme example of which is the one that took down AT&T’s whole long-distance
network [3], which has been attributed to a bug caused by a break incorrectly
associated with a switch when the programmer’s intent was to exit the enclosing

looping statement.

Interestingly, the C-inspired languages, most notably Java, preserve falling
through cases as the default behaviour, with experienced C programmers more
in mind than beginners (some C programmers even design the case labels in their
code to rely on fall-through). Microsoft’s C#, one of the latest additions to this
family of languages, departs from this tradition by assuming fall-through when
faced with empty cases, but syntactically requiring a break at the end of all non-
empty case, and, should fall-through be required, forcing the programmer to make
it explicit via gotos. C#’s attempt, commendable as it may be, will probably
throw off old-school programmers by placing additional constraints on a familiar

structure.

The CV solution goes halfway, keeping the traditional switch construct (almost)
unchanged, but also providing labeled breaks (§3.1), which help prevent errors like
the one described above, by stating explicitly what construct the break is intended
to exit, and by introducing a new control statement, called choose, described

below.
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As much as the preservation of the switch semantics was a design goal (for
backwards compatibility), some changes were introduced for the sake of uniformity
with other concepts in the language. Since these changes are incompatible with
C, the translator might signal working C code as invalid CV. These changes are
the main sources of incompatibilities between C and CV programs, and, along with
the clash of identifiers with new keywords, the most likely to create problems with
legacy code. In practice, however, real code seldom makes use of the C constructs
that CV changes, and therefore, the impact of the incompatibilities is minimal (for

a systematic study of these issues, refer to chapter 6).

The major difference between CV’s switch/case and C’s is that case clauses
are not allowed anywhere but in the (first-level) body of a switch statement. This
restriction is geared to prevent jumping into a control structure, with the possibility
of bypassing invariant-checking code, variable declaration or initialization and other
crucially important statements. The ability to ‘interweave’ a switch with other
control structures, along with the default fall-through from cases, allows for code
like the classic Duff’s device (figure 3.4). Duff’s device has been called “the most
dramatic use yet seen of fall through in C”. It was discovered by Tom Duff, while
unrolling loops in the interests of performance and rewriting the unrolled versions by
interlacing the structures of a switch and a loop (resulting in a so-called “unnatural
loop” [94]). While Duff himself could not place his device as an argument for or
against fall-through [118], CV designers had no such qualms and set Duff’s device,

for all its potential efficiency gain and ingenuity, squarely in the curiosity bin.

A minor difference between C and CV’s switch statements concerns code placed
between the switch and the first case label. Code in that position is syntactically
valid in both languages, but it is handled differently. While C does allow decla-
rations to have a scope that includes all the case clauses, it does not guarantee
that initialization of these entities is performed. Other than declarations, code
in this position is considered “unreachable” and can only be executed if it is ac-
cessed through a goto statement. This behaviour is confusing and inconsistent
with all other declaration contexts in the language. Therefore, CV adopts alterna-
tive semantics: initialization of these declarations is guaranteed. To achieve this

semantics, the translator generates an extra block around the switch and hoists
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register n = (count + 7) / 8; /* count > 0 assumed */

switch (count % 8)

{

case 0: do { *to = *from++;
case 7: *to = *from—++;
case 6: *to = *from-++;
case 5: *to = *from—++;
case 4: *to = *from—++;
case 3: *to = *from++;
case 2: *to = *from—++;
case 1: *to = *from++;

} while (——n > 0);

}

Figure 3.4: Duff’s device

initial declarations to the front of that block. This transformation is illustrated in
figure 3.5.

3.2.1 Case labels

Historically, the switch statement descends from the switch construct of Algol
60, which is a specialization of Fortran’s computed gotos. C’s switch differs from
Algol’s in a number of respects, most notably in the fact that ranges are not al-
lowed as case labels (although they were considered for inclusion in the process of
developing the ANSI C89 standard [9]).

Part of the rationale behind the default fall-through between cases is that the
same code can apply to a variety of options, which permits code reuse. It also gives
rise to a number of idioms that (partly) make up for the limited capability of the
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switch(i) {

int i = 4;
case 0:

i = 17,

/* fall through */
default:

printf("%d\n", i);
¥

(a) CY version

{
int i = 4;
switch(i) {
case 0:
i = 17;
default:
printf("%d\n", i);
}
}

(b) C translation

Figure 3.5: Declaration hoisting in selection statements

value labels, in particular, for lists of unrelated values, for example:

switch (i) {

case 1:

case 2:

case 8:

case 22:

case 43:
do_something();

}

Although this is a well-established idiom, it often falls short of its aim.
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particular, consider the code fragment:

switch (i) {

case 1:

case 2:

case 3:
code_range_1to3();
break;

case b50:

case 51:

case 52:
code_range_50t052();
break;

}

and similar instances when consecutive values have to be manually enumerated,
a task that is both tedious and error-prone. CV’s designers have determined that
the introduction of more elaborate case labels is necessary. A programmer can
specify a range of consecutive values in a case label by using either gcc-style (start

. end) or CV start”end syntax!, where start and end have to be of comparable
integral types, for which an incrementing or decrementing sequence can be inferred
(i.e., they may be integrals or enumeration types in ascending or descending order).
Failure to comply with this requirement results in the compilation process issuing

a type-check error.

Ranges are implemented by expansion to the corresponding falling-through case
statements, thereby introducing no performance degradation compared to standard
C. A more direct translation into gcc ranges could conceivably be compiled into a
more efficient representation. An illustration of the kind of transformation currently

implemented in the system is presented in figure 3.6.

LCV adopted a different syntax than the gcc’s ellipsis to denote a range, because its specification,
1,,...,10, requires spaces around the ellipsis, otherwise it is tokenized as “1.”, causing a syntax
error.

40



typedef enum enum __anonymous(
{ ONE, TWO, THREE } options_t; {
__ONE__C13e__anonymous0,
__TWO__C13e__anonymous0,

switch (i) { __THREE__C13e__anonymous0,

case ONE ... THREE: g
printf("In enumeration\n");
break; :
case 3 ... b: switch (__i__i) {
printf("Between 3 and 5\n"); case __ONE__Cl3e__anonymous0:
break; case __TWO__C13e__anonymousO0:
case 6 " 10: case __THREE__C13e__anonymous0:
printf("Between 6 and 10\n"); printf("In enumeration\n");
break; break;;
default: case 3:
printf("Too high (%d) !'\n", i); case 4:
break; case 5:
} printf("Between 3 and 5\n");
break;;
case 6:
case 7:
case 8:
case 9:
case 10:
printf("Between 6 and 10\n");
break;;
default :
printf("Too high (%d)!\n", i);
break;;
__LO__: break;

}

Figure 3.6: Use of ranges and its translation.
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3.2.2 choose statement

The CV designers chose to “tinker” with some obscure problems with the switch
statement, even at the cost of backwards compatibility. Nonetheless, the problems
with switch are too fundamental, and cannot be resolved without invalidating a
significant amount of legacy code. As an alternative course of action, a new control
structure, choose, is provided as an (almost) drop-in replacement. The choose

statement takes the form:

(choose statement) ::= ‘choose’ ‘(" (expression) *)’ { (case label) }+ (statement)

| ‘choose’ ‘(" (expression) )’ {’ [ (declaration list) | { (case clause) }+ ¢}’
(case label) ::= [ ‘case’ (case value) | ‘default’ | ‘.’

(case clause) ::== { (case label) }+ (statement list) [ ‘fallthru’ [ ;" | ]

Inside a choose block, the start of a new case clause signals the exit from the
block. The only exception to this rule occurs when the last statement of a case
is a fallthru statement, which provides the same termination semantics as a case

clause in a switch statement.

choose (test) {
case 1:
/* implicit break, exit block */
case 2:
/* explicit fall through */
fallthru;
case 3:
/* ... do something else ... */

The redundancy of two select statements, although seemingly a departure from
the C way of doing things, was introduced in the hope that new programmers

would use the new choose statement if they are first introduced to it. The more
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int fred() {

int __fred__Fi__()

int i; {
int __i__i;
choose (i) { switch (__i__i)
case 3: {
i = b case 3:
case 2, 4: (__i__i=b);;
= 3; break;;
fallthru; case 2:
default: case 4:
i = 3; (__i__i=3);
} /* null statement */ ;;
} default :
(—-io-i=3);;
break;;
__LO__: break; }
}

Figure 3.7: Translation of the choose statement.

natural semantics of the choose statement may gradually attract more experienced

programmers, rendering the switch statement obsolete.

Implementing the choose statement is a matter of introducing a simple rewrite
in the Abstract Syntax Tree. This rewrite casts every choose statement and its
corresponding block into an equivalent switch, where the implicit breaks are in-
serted in their proper places, and the fallthru statements are elided (see figure
3.7).

3.3 Exception handling

The ability to exit loops and blocks from various points to a static location naturally
generalizes in at least two directions. The first is to extend the ability to jump

out of other constructs, in particular, to jump out of function activations. The
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second direction is a relaxation on the requirement of exiting to a static location.
Both features are very useful. Exits from arbitrary code to dynamically determined
locations allow the construction of complicated control flow patterns in a structured
way. In particular, situations outside the normal purview of an algorithm, e.g.,
errors, can be addressed consistently without obscuring the real purpose of the

code.

In C, abnormal conditions are dealt with (or often not dealt with) by checking
special ‘error’ values from function returns and/or global status flags, or trapping
signals, possibly logging the error and terminating execution more or less gracefully.
Handling errors by checking the return code of a function has two disadvantages: the
error handling code gets intertwined with application code, decreasing the readabil-
ity of both, and checking for an error can quickly become unmanageable, especially

in a complicated function call chain.

Reliable software strives to work correctly, or to determine that correct operation
is impossible in a given situation. A mechanism for appropriately dealing with

abnormal or exceptional situations must provide:

1. A clean way to cancel the execution of the program fragment within which

the situation arose.

2. Means of notifying an abnormal situation has occurred, as well as consistent

and expressive ways to describe it.

3. The possibility to match to the situation specific code that knows how to deal
with it.

4. The ability to specify what course of action the program must follow once the

abnormal situation has been addressed.

Items 1 and 2 are independent of the context: if a code fragment C' is unable to
guarantee its continuing correct operation, the correctness of any piece of code that
depends on C'is immediately suspect. In this case, proceeding with the computation
is pointless and potentially dangerous, so it is better to cancel the execution of C,

and to release any intermediate allocated resources. Also regardless of the context,
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an exceptional situation has to be described concisely and completely, at the level
of abstraction of the code that detects it. By contrast, items 3 and 4 are closely
related to the context. For example, it is conceivable that two programs using the
same function may want to react differently in the presence of the same abnormal
situation. If it is to be useful, a mechanism to deal with abnormalities must be
flexible.

An ezxception handling mechanism (EHM hereafter) constitutes a family of pro-
gramming language constructs that furnish the programmer with linguistic means
to address all the concerns outlined above. Despite reservations by a number of
prominent language designers (among whom are names of the caliber of C.A.R.
Hoare [67] and Doug McIlroy'), most modern programming languages include an
EHM. EHMs allow a clear separation of the “usual” and exceptional control flows,
and do away with the need of multiple testing for the same error and ad hoc control

transfers.

Although EHMs have been proposed for a variety of runtime systems, this dis-
cussion assumes a procedural, non-object-oriented, sequential language in which
functions’ activations are organized in a single stack (i.e., a C-like environment).
This stack is assumed to grow upwards, i.e., when a function invokes another, the
activation of the second function is assumed to be on top of the first. This conven-

tion is also observed in the figures that illustrate this chapter.

Different EHMs have been extensively studied, but there is no universally-
accepted terminology. This work uses terminology from Buhr et al. [22]. An
“exception” is characterized as an event that is ancillary to algorithmic execution,
and which is comparatively infrequent. When a code fragment detects the occur-
rence of such an event, it can notify the rest of the system by raising or throwing an
exception, which is a data object describing the event. An EHM permits exceptions
to be structured via parameterization and derivation, providing expressive means
to describe exceptions across orthogonal concerns. To address issue 3 above, EHMs

introduce the concept of a guarded region with which code specific to the kind

!Mcllroy claims that exceptions cause a system to be less reliable, as programmers and library
writers throw exceptions rather than try to understand the problem, or even report it in a concise
and complete manner [122].
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of exception is associated, and organized in handlers. Blocks without associated
handlers are called unguarded regions. What handler is activated (or catches the
exception) in each particular raise is determined by the propagation model. When
one of the intervening handlers completes successfully, the exception is said to have
been handled, and the system proceeds according to the EHM’s transfer model,

which could be termination or resumption.

In the following section, the design space of the components of an EHM is
explored in some detail. With this background, CV’s EHM design and implementa-
tion is described in the next section. Finally, alternative decisions to incorporating

exceptions into C are briefly reviewed as related work.

3.3.1 EHM design space
Canceling incomplete operations

During propagation, multiple stack frames (activation records) may be terminated.
Each stack frame contains a function’s arguments and local variables among other
data. All local data must be cleanly deleted. Resources, like dynamic memory, file
descriptors, socket descriptors, etc., may have been acquired during initialization
of locals or in the course of the completed part of a function, and it is necessary to
return them to the pool of available resources. EHMs usually guarantee the correct
termination of automatic data, and provide, either by themselves or in conjunction
with other language features, a means to free manually allocated resources. Ex-
amples of EHM constructs that perform this service are finally clauses in Java,
or unwind—protect special forms in Scheme [116] and Common Lisp. In C++, this

effect can be obtained by using a destructor for a class.

Describing exceptions

The correct description of an abnormal situation is crucial to the determination
of the action to be taken in response. EHMs in languages like PL/I, Ada or Lisp

describe abnormal situations by tags, strings or a system-wide numeric encoding.
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This approach is clearly not extensible, or even convenient in larger systems. An al-
ternative approach, taken by ML, is to describe exceptions by exception types. ML’s
algebraic types (disjoint-tagged-unions) serve this purpose admirably. Furthermore,
having types describe exceptions allows the programmer to pass additional struc-
tured data along with the name of the exception, giving raise to parameterized
exceptions. Since exception types and “computational” types are used for quite
different purposes, they are usually kept separate from each other [25]. Languages
like C++, however, allow the programmer to throw objects of any type, which

confuses this difference.

C++ and other object-oriented programming languages further refine the “ex-
ceptions are types” approach by organizing exception types in hierarchies and allow-
ing the propagation process (described below) to match exceptions with handlers
for ancestor types. This feature is usually known as derived exceptions, and is
probably one of the clearest uses of inheritance as a classification device in the
classical sense [104]. It is also one argument in support of multiple inheritance. It
is common that exception types form the deepest hierarchies in class libraries for
languages like C++, Java or C#£.

The exceptions a function potentially raises are an aspect of its behaviour. Func-
tion behaviour is usually encoded in an interface specification (also known as proto-
type in C/C++ or signature in Java), so it is natural to extend such specification to
include exceptions, resulting in another feature common in EHMSs: exception lists.
These lists are most noticeable in Java. The exceptions a Java method can raise are
enumerated after its parameter list'. Any code invoking a method so qualified must
either catch all the exceptions in the method’s exception list, or include the ones
that go uncaught in its own exception list. This allows the Java compiler to check
for the compatibility of methods, and serves as documentation on the function’s
operation. In practice, however, most programmers feel that exception lists violate
the principle of information hiding, cause more problems than they solve (Should

an overridden method throw the same exceptions as the method it overrides? If

IThis is only true for checked exceptions (those that inherit from Exception). Other kind of ex-
ceptions, namely run-time exceptions (inheriting from RunTimeException) do not decorate the
signature in this way.
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the thrown exceptions are to vary, need they do so covariantly?), or overwhelm
programmers with details. This state of affairs often results in exception lists being
overly general, and exception lists only containing the supertype java.lang.Exception
are common. This practice discards whatever error-specific data the exception car-
ries and in so doing defeats the purpose of parameterized exceptions. Exception
lists are also problematic in generic code, as the requirements on the functions a
type provides must also list the exceptions those functions potentially raise. As
stated above, exceptions are a concern orthogonal to the notion a method, generic
or otherwise, implements. Having the exception specification play such a prominent
role, for all its usefulness, is, in commonly used type systems, highly inconvenient;

there seems to be no middle ground.

Guarded regions

Handlers that deal with specific exceptions are associated with guarded regions.
The granularity of a guarded region can range from a subexpression [60] to blocks
of statements, and without loss of generality, most statement-oriented languages
use a compound statement. This design allows lexical nesting of guarded regions.
As the program runs, and control flow proceeds through guarded regions, func-
tion invocations also cause guarded regions to dynamically nest. Upon entering a
statically or dynamically nested guarded region, the guarded region’s handlers are
added to the list of available handlers. Similarly, when control crosses the borders
of a guarded region on its way out, the handlers associated with the region are

removed from the list of available handlers.

Propagation

As noted by item 4 on page 44, an EHM determines the control flow the program
takes when an exception is raised. This control flow generally involves accessing
one or more handlers, and, after the exception is handled, transfers control to a
point where normal operation of the program can continue, or the program can

safely terminate.
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Complex control flow patterns, especially across binding environments, are usu-
ally explained by describing control transfers in terms of functions. Jumps, for ex-
ample, are presented as functions that never return, and exceptions are described
in terms of one-shot downward or upward continuations [130]. A dual approach,
taken in [22], decomposes a function, inasmuch as control transfers are concerned,
into two jumps, a call and a return. If it is possible, by using the lexical structure of
the program, to determine statically, i.e., before the program is run, the symbolic
address control transfers to by a jump (call or return), the jump is qualified as
static. In contrast, if a particular control path of the program is the basis for the
determination of jump targets, the jump is dynamic. The possible combinations of
static/dynamic call and return generate a taxonomy that is useful to characterize

exception propagation models. All four cases are discussed.

Call
Static ‘ Dynamic

Dynamic || 1 function call | 2 resumption

Ret . .
OV gtatic 3 sequel 4 termination

Table 3.1: Control Structure Taxonomy

1. Normal function invocation in a lexically-bound environment transfers con-
trol to the address of a lexically-visible function (static call). The code for
the function is executed, and, upon completion, control returns to the point
immediately after the point of invocation, which cannot be known until the

code is run (dynamic return).

2. A function call in a dynamically-bound language, e.g., Emacs Lisp [96] trans-
fers control to the function definition that is closest in the call chain to the
point of invocation, a location not determinable until runtime (dynamic call).
Similarly, dynamic propagation models also rely on dynamic call (raise). Han-
dler selection depends on the nested list of available handlers built at runtime,
allowing handlers to vary for each function call. The code of the selected han-
dler is executed, and, upon completion, control returns after the raise point

(dynamic return). This behaviour constitutes the resumption transfer model.
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3. Tennent [129] proposed a construct, called a sequel, using static call, but
that returns to the point past the end of the lexical scope where it is defined
(static return). Knudsen [80] built Beta’s EHM around this construct, but

this design seems to have few proponents.

4. The most popular combination for EHM is dynamic call and static return
because of its flexibility. Handler selection is done as described in item 2.
Once the selected handler has completed, control continues in the lexical
context after the guarded region associated with the selected handler. This

behaviour constitutes the termination transfer model.

Dynamic call is almost universally considered the right design decision for an
EHM. However, the right choice between dynamic or static return (termination or
resumption) is less clear. Since they are not mutually exclusive, it is possible to
adopt both termination and resumption models in a programming language. Both
models are depicted in figure 3.8. The call stack is shown on the left, growing
upwards, where every block denotes an activation. If there are handlers associated
with an activation, they are shown on the right. The solid arrows connecting activa-
tions denote (normal) flow of control. Upon the raise of an abnormal event (marked
“raise”), the propagation mechanism searches among the available handlers for one
that is appropriate to the raised exception. This search is denoted in the figure by
the dashed line through the handlers on the right. In the situation depicted in the
figure, there is no appropriate handler to the raised exception among those associ-
ated with the tightest (lexically- or dynamically-) enclosing guarded region, so the
propagation continues among the handlers at the next guarded region. A matching
handler is found among these (marked “catch”), so the handler code is executed.
At some point in this process, the handler’s code determines that the abnormality
is better addressed at a higher level, so it reraises the exception (marked “reraise”).
This causes another round of propagation of the same exception to begin, this time
among the handlers associated one level out (notice that the dashed line does not
pass through the last available handler on the current level), and not stop until an-
other appropriate handler is found two levels out (marked “catch”). This handler’s

code is run to completion. At this time the exception is considered handled.
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The handler-clause matching usually proceeds in accordance to the rules already
in place with respect to other aspects of the language, e.g., type equivalence, or
the extended rules of argument-parameter matching. These rules govern also the
possible ways the exception can be used in the body of the handler, e.g., what
operations can be applied to the exception object. A common extension to the
function invocation analogy in handlers allows for the provision of a default or

“catch-all” handler, that matches any exception.

What happens after the exception is handled is determined by the policy in
whether the return location is static or dynamic. The mechanism can choose a
sequel-like behaviour (as in Beta) and transfer to the end of the guarded region that
handled the exception (point “1” in figure 3.8), resulting in termination semantics.
Alternatively, if dynamic return behaviour is chosen, control is returns to the point
after the exception was raised (point “2” in figure 3.8), effectively resuming the

operation within which the exception occurred, resulting in resumption semantics.

Termination-versus-resumption is an ongoing debate in programming language
circles, with resumption most favored among the Xerox PARC-bred community
(Smalltalk, CLOS, Mesa/Cedar), and termination advocated among the C++ and
Java camps. One model does not preclude the other, and it has been suggested
that they are complementary, and serve different purposes, and address different
concerns. If the two models are to coexist in a language, however, close attention
has to be paid to several issues. Foremost among these is when is the propagation

model for a particular raise selected. There are three possibilities:

1. As part of the exception type (in the declaration).
2. Indicated at the raise point.

3. Indicated at the handler.

Encoding propagation model preferences in the exception type should be flexible
enough to provide for the case when the exception is dual, i.e., when it is not specific

to either mechanism.
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Regardless of what propagation model is chosen, the combination of resumable
and terminating exceptions calls for more sophisticated handler semantics, that reg-
ulate the coupling or the propagation model specified by the raised exception and
the handler that is to deal with it. This consideration is part of the handler match-
ing semantics, and is usually specified by describing the behaviour of the system
under all possible combinations of exception/handler choice of propagation models.
Not all such combinations make sense. In particular, it is impossible to match a
terminating exception with a resumption handler, since by the time execution is to
be resumed, the stack has been unwound. In general, unmatched exception/handler
combinations are problematic, and the most conservative semantics for these cases

are usually safest.

The added flexibility of dynamic propagation is not without drawbacks. In par-
ticular, the case of an exception going uncaught and escaping to the runtime, due to
a lack of an appropriate handler. Different programming languages handle this case
differently. Some, like Java, try to determine statically whether there is the possi-
bility of this happening in a particular program, via powerful control-flow analysis
at compile time. C++ provides a terminate() function hook for uncaught excep-
tions, whose default behaviour is to abort the execution of the program. Despite

this important failing, dynamic propagation remains the most popular choice.

3.3.2 CV Exception Handling Model

In this section, the syntax and semantics for the CV’s EHM are presented, relying
on the background developed above. The CV EHM includes parameterized and

derived exceptions, as well as both resuming and terminating transfer models.

Describing exceptions

In contrast with C++, where values of any type can be used as exceptions, in CV,
the only type that can be thrown is exception, an alias for the type struct _exception,
defined in the runtime library. Derived exceptions are constructed from this type

via record composition. That is, more specialized exception types are structs that

23



include an anonymous field of type exception. This rule builds upon the implicit
conversion rules in CV’s static type system (inspired by a similar extension in the
Plan-9 C compiler [99]), which introduces an implicit conversion from struct in-

stances to the type of an unnamed field:

typedef struct _exception { char *msg; } exception; /* runtime library */

struct _io_exception {
exception;
char *device_name;

} io_exception;
printf("Exception: \%s", io_exception.msg); // implicit cast to _exception

This approach, taken recursively, permits forming exception hierarchies a la object-
oriented inheritance chain, rooted on exception. In this way, more organized excep-

tion handling patterns and some reuse of handler code are possible.

Guarded regions

Like C++ and Java, guarded regions are compound statements prefixed by the
keyword try. Inspired by Java, CV includes a finally clause that is executed
regardless of how the try block terminates. Every guarded region may have multiple
handlers associated with it; each handler comprising a compound statement and
introduced by one of the keywords resume or terminate. There is at most one

finally clause after the handlers:

(try statement) ::= ‘try’ ‘{’ (statements) ‘}’ [ (handlers)+ | [ (finally clause) ]
(handlers) ::= [‘terminate’|‘resume’] ‘(" (ezception spec) )’ ‘{’ (catch clause) ‘}’
(finally clause) ::= ‘finally’ ‘{’ (statements) ‘}’

Notice that CV follows the C++ approach for the scope of handlers and try
blocks. By requiring handlers to be associated with blocks, the language syntax
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effectively prevents declarations in try blocks from leaking into handlers. In par-
ticular, it prevents the problem of the handler referring to objects that are nonex-
istent. Consider, for example, the case of a declaration placed after an expression

that raises an exception.

The exception specification is a CV variable declaration with certain restrictions.
In particular, since CV uses name equivalence for types, declaring a new type in a
handler, e.g.:

try {

} terminate( struct _new_exception { exception; /* more fields */ } e) {

introduces code that is effectively unreachable. The current implementation of the
CV translator flags this situation as invalid. It also makes sure that the catch-all
terminate(exception) or its resume counterpart occurs at the end of a handler
list.

Raising and propagating exceptions

An exception can be raised at arbitrary points in the program. The syntax for

raising (and re-raising) an exception is:

]

(raise statement) ::= [ ‘terminate’ | ‘resume’ | [ (expression) | ¢;

As can be seen, the propagation model for a given exception is set both at the
raise and handle points. Encoding the propagation model in the exception type
involves modifications to the type system (terminate can only throw terminating
exceptions, etc.) and imposes finer control over the “inheritance-as-composition”

mechanism, for no expressive gain.

CV has matching semantics of handlers, that is, a handler has to match the

exception type, specified in the handler clause, and the propagation model, specified
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by the kind of raise/handler pair, for it to be selected. A reraise must match with

the propagation kind of the initial raise.

When there are no raised exceptions, control flows through guarded regions,
ignoring handlers and executing finally clauses. When an exception is raised, the
propagation mechanism searches the guarded region for available handlers lexically
from top-to-bottom for each handler clause, in the order of definition. The first han-
dler that matches the raised exception is the one selected. Note that this strategy
means that a more general exception specification can shadow a more specific one
occurring later in the handler list, thereby rendering the latter handler effectively

unreachable.

Upon handler selection, the exception parameter (the result for the expression of
the raise statement) is bound to the variable declared in the exception specification

parameter.

Assume that the selected handler runs to completion, i.e., that no further ex-
ceptions are raised or reraised during its execution. For a resume handler catching
a resumable exception, the execution state at the point of the raise is restored,
and execution continues at the statement after the one that issued the raise. For a
terminate handler catching a terminating exception, the execution state between
the raise point and guarded region containing the selected handler is discarded, and
control continues after the guarded region, once the finally clauses of all discarded

guarded blocks are executed.

If after the stack of available handlers is completely examined an appropriate
handler is not found, the uncaught_exception function hook is invoked. The default
behaviour of uncaught_exception is to abort the execution of the program, but a
programmer can provide an alternative implementation. However, an alternative

implementation must eventually abort.

3.3.3 Implementation

There are two popular strategies for the implementation of a termination-based

exception handling mechanism. Christiansen [28] calls them dynamic registration
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and static table. The static table approach is only feasible when access to the (ma-
chine) code-generation engine is possible, as knowledge of the addresses (symbolic
or otherwise) of generated code is necessary. For a source-to-source translator, this

approach is clearly infeasible.

For my implementation of CV’s EHM, I selected the dynamic registration method.
This approach consists of storing the state of the program! upon entry to a guarded
region in a LIFO list, or stack. The state information is stored in a record that
also contains a flag describing the status of the propagation. A runtime library
function creates and links records onto a guarded-region stack. This function is
invoked upon entering a guarded region. Also, a guarded block is translated into
a switch statement whose cases reflect the current status of the propagation, i.e.,
whether a handler is being searched, or the finally clause is being executed. The
handler clauses are placed in one of the cases and the finally clause in the last.
If the guarded region’s run is completed normally, the record is unlinked, and the

finally clause, if present, executed.

When an exception is raised, is top of the guarded-region stack is examined
for the next available group of handlers, i.e., the ones corresponding to the closest
dynamically enclosing guarded region. As pointed out above, CV matches handlers
to exceptions depending on the exception type and then confirms the match by
ensuring that the propagation model for the raise and handler specifications are
the same. Runtime type matching is performed using a runtime type descriptor, or
RTTD?. For the CV translator, the RTTD is a linked list of names, containing the
name of its declared exception type and a list of the exception types it is derived
from (cfr §3.3.2) recursively. This representation permits the type matching to take
the form of a linear search over lists. The translator converts handler clauses into
if chains, preserving the order of handlers and guaranteeing that the first handler

that matches is the one that is selected.

If a handler is not found, control is transferred to the finally code, if it exists.

L Ad minimum: the values of the stack and frame pointers and the program counter.

2Common RTTDs are strings containing type names, perhaps after mangling. Full fledged, dynamic
type identification (RTTI) schemas, like that of the GNOME GObject framework [128] are also
common.
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If this code is run to completion, the top record on the guarded-region stack is
unlinked, and the process proceeds with the next record. If a handler is found, its
code runs. If this code is run to completion, control is transferred to the finally
clause, with the subsequent unlinking of the top record once the finally code is
done. The exception then is handled, and the program proceeds at the level of the

catching guarded region.

The standard C library functions for nonlocal jumps, setjmp and longjmp pro-
vide for jumps downward in the call stack, and automatically unwind the stack.
Thus, this facility does not allow for the implementation of resumable exceptions.
More versatile, but less portable libraries that provide the necessary functionality
are POSIX [69] user-level context-switching functions'. In particular, operating
systems like Windows and even several Unix variants like FreeBSD are lacking in
these facilities. Even with compatibility among operating systems, the problem is
not completely solved (for example, at the time of this writing Cygwin still did not
include the ucontext functions). Using ucontext functions permits the storage of
the program state at the raise point of a resumable exception, state that is restored
once the exception is handled. As a result of these technical difficulties, resumption

is not implemented in the current CV translator.

The translated output for a program containing terminating exception handling

code is presented in detail in figure 3.9.

The implementation described above is not without problems, the most obvi-
ous of which is performance. Each try block has to set up a new node in the
guarded-region stack. If no exceptions are thrown, but there is a finally clause
present, longjmp still has to be called, incurring a performance hit. Furthermore,
the GNU implementation of the non-local jump facilities make extensive use of the
C++ runtime system, in particular the exception-handling support routines. Most
of the code in these support routines has to do with ensuring that all objects with
a local scope are destroyed (and their destructors invoked) when the corresponding

scope is abandoned, which is not needed for the purposes of CV exceptions. Us-

LOther possible choices include the 1ibunwind([5] library, that defines a portable API for call-chain
manipulation in C programs. At the time of this writing, it supports only Itanium and x86
architectures, which is not portable enough.
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int foo() {

{
int foo() { excobj.data = (void *)&x; // global object
io_exception nofile; longjmp();
stcpy(nofile.msg, "No file found."); }
terminate nofile; /* alternative execution path */ return 0;
} }
[/ //. ..
void bar() { void bar() {
/). {
try{ gd_region_link link;
Vas gd_add_context( &link );
foo(); switch( setjmp(link.ctx) ) {
} terminate( io_exception ex ) { case 0: {
// handler 1 //protected region of code, including:
} terminate( exception ) { foo();
// terminate any longjmp( link.ctx, INHANDLER );
} finally { }
close(fd); case INCODE:
} // beginning of handlers
} if (match( excobj.data_type, handlerl.type )
& excobj.prop_model == handlerl.prop_model )
// handler 1
io_exception exc = (io_exception)excobject.data;
excobj.handled = true;
longjmp( link.ctx, INHANDLER );
} else
if (excobj.prop_model == handler3.prop_model)
{

// catch-all handler
excobj.handled = true;
longjmp( link.ctx, INHANDLER );

}
case INHANDLER:

{

close(fd);

gd_remove_context(&link);

if (! excobj.handled )

longjmp( gd_top_context(), INCODE );
}
}

Figure 3.9: Exceptioﬁghandling translation.



ing compiler or library-specific facilities, such as GNU C’s __builtin_setjmp() and
__builtin_longjmp() that limit their functionality to basic computer state informa-

tion might significantly alleviate the performance degradation.

Furthermore, there are concerns about the generated code. Global variables
are used to store the root of the guarded-region stack and the exception data
object, which is almost always poor practice, and immediately problematic when

concurrency is introduced to the program.

3.4 Related work

The addition of control structures to the C language has been the subject of many an
academic and technical study. Most of them involve modifications to the runtime
organization (for example, Budd added Icon-style generators [21], a work which

involved substantial reorganization of the runtime stack).

Modifications to the switch statement and the default fall-through behaviour
have also been occasion of much discussion. Of these studies, it is worth singling
out Cyclone [127], which extends switch to handle values of any type and case
labels to specify patterns, possibly qualified by guards, which are predicates whose
truth is required for the pattern to match, and the particular case to be selected.
Particularly interesting is the fact that switch conditions and case patterns in Cy-
clone may involve tuples. Cyclone also forbids falling through non-empty cases, and
introduces the keyword fallthru for the programmer to confirm that fall through
is the desired behaviour.

EHMs have been integrated into C in a great variety of forms. The dynamic
registration method has been especially popular in this task for it implies little or no
changes to the compiler or runtime. The most complete description of the dynamic
registration method is by Cameron et al. [27], in the context of C++. Examples
of this approach are the cexcept[34] library, that provides C++-like try, catch,
and throw constructs; and the real-time oriented RTFfiles [111], that also includes
finally clauses. Neither of these libraries permit resumption, or even matching by

type, as exceptions are identified by system-wide numeric codes. Another exponent
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of the dynamic registration approach, also worthy of mention is Allman’s [8], which
uses string exceptions in combination with regular expression matching at the han-
dlers for a flexible form of derived exceptions that does not involve inheritance or

inheritance-like mechanisms.

For better performance, platform-specific C extensions, like those known as
“Structured Exception Handling”[98] on Windows platforms could be generated.
At a lower level, if C is not to be generated, but an intermediate code is targeted,
Ramsey and Peyton-Jones’s C— [102] provides versatile exception handling mecha-
nisms, and is coupled with a variety of backend code generators. At an even lower
level, the most popular virtual machines to date, Sun’s JVM and Microsoft’s CIL
facilitate the walking of the stack, which allows for very flexible EHM implemen-
tations. At the architecture level, very few platforms (e.g., SPARC and MIPS)

support the new generation of generic stack unwinders.

Alternative approaches to error handling for C, besides the ones mentioned at
the start of the section, are basically extensions to the status-flag technique. An
example of this is an approach used by most C-CORBA bindings [63], consists of
passing extra by-reference “environment” records as arguments to functions. The
programmer needs to check the values the function has placed in specific fields of this
records to determine whether an error occurred during the functions’ run. Although
this is perhaps the most appropriate way to check for errors in a distributed context,

it suffers from the same weaknesses as the status-flag methods.
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Chapter 4

Tuples

The concept of “subprogram” arose in the early days of computer programming.
In general, a subprogram is a named, self-contained, possibly parameterized, frag-
ment of code that performs some well-defined action that is invokable from another
subprogram, to which it may or may not return a value. The key point is that a
subprogram is independent of its caller, therefore usable by any other subprogram

at any point in its code.

The subprogram is the most common abstraction mechanism in all programming
languages, and was present even in the first one, Fortran. Subprograms play a
pivotal role in the “structured programming” school of thought, and in software
engineering with respect to the notion of modularization. Today, virtually every
programming language supports the notion of a subprogram and all programmers

are taught about and use subprograms as a primary coding mechanism.

Under the concept of subprograms, endless variations of the original theme can
be found: arguments can be passed to the called subprogram according to a number
of policies (as copies, references or a representation of their actual textual form),
argument lists can be of any fixed or even of unspecified length, subprograms can
directly or indirectly call any other subprogram including themselves ad infinitum,

can be called asynchronously, or called on a different computer, etc.

It is perhaps surprising that these numerous mutations, generated over the more

than 40 years of research and use, have not wandered far in form and concept from
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the original notion of subprogram call. The main components of such a call are
still clearly recognizable: a list of arguments passed to parameters, a change in
the control flow from the call to the subprogram, saving the necessary execution
state so it can be restored after the subprogram and those that it has called have
finished; and, should it be necessary, the placing of the result of the subprogram

computation in a location where the calling program can access it.

Exploring the design space depicted above, KW-C [131], one of the direct fore-
runners of CV, included output parameters, named return values, and other fea-
tures. Most notable among the extensions, it introduced to C language the idea
of tuples. Tuples capture in a limited way the notion of independent computa-
tions, and thus are more a data structuring mechanism than a new built-in type;
tuples allow for a more concise expression of several idioms in C that involve the
use of temporaries. These idioms include multi-valued functions, the manipulation
(packing and unpacking) of composites, operations like the simultaneous selection
of multiple members from records, or initialization of the same, and various parallel
forms of assignment. Having tuples in the language establishes uniformity to all

such manipulations.

CV relies on tuples to enhance the CV language described by Ditchfield [47] and
Bilson [16] in much the same way that KW-C does for C. To this end, I extended the
original CV expression analysis algorithm to include the effects of overloading and
type specialization in tuple operations. Moreover, I generalized KW-C’s notion of
a tuple to encompass designators, a feature that allows for very expressive function
composition patterns. Other features that resulted from the extended expression
analysis phase are named parameters, default values for arguments, and named
return values. The description of these modifications, the features they sustain
and, more importantly, the resulting increased expressiveness of the language form

the substance of this chapter.

4.1 Multi-valued Functions

In the most general case, a subprogram accepts arbitrary number of arguments of

arbitrary types and returns arbitrary number of values of arbitrary types. There are
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a number of possible explanations for programming languages designers not giving
multiple value-returning (MVR) functions the same importance (if any at all) as the
single-valued returning (SVR) counterpart. First there is the notation. Awkward
syntax is probably the first reason that discourages designers from including MVR
functions in their language. Ideally, a MVR function should be syntactically as
similar as possible to a SVR function, that is, it should be possible to declare and

use an MVR in every context where a traditional SVR function occurs, specifically:

returning values: It should be possible to store the values returning from a func-

tion into appropriate variables, and

composition: It should be possible to use the values returned from a function as
arguments to another (provided they are type-compatible), without the need

of intervening temporaries.

Syntax meeting these requirements is not immediately obvious in most pro-
gramming languages. Particularly problematic is the composition of MVRs. For

example, given a (curried) function type ascription, expressed as:

funf : Types; — Type;y, — ... — Type;,
fung : Type,; — Type,, — ... — Type,,,

if Type,;...Type, s, i,k < m,m > n, match Type;, ,,...Types,, the functions

f and g are composable, and their composition has the type ascription:

f-g:Type;; — Types, — ... Type, ,

If SVR-function composition is expressed in prefix notation f(g(...)), it is clear
from the denotation that the result of the innermost function is to be used as the
argument of the next function in the chain. For MVR-functions, however, it is not
so obvious what results are to be bound with what parameters. An infix "apply’

operator solves the problem:
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(Valuepype, , Valueryye,, . . . Valuery,. )appfappy (4.1)

This form of notation is so appealing in this particular case that even otherwise
algebraically-inspired languages, such as Beta [87] adopt it (the proposed app op-
erator is written => in Beta). The function takes_two below takes two parameters,
called input parameters®, which are assigned (left-to-right) from the variables y and

z as arguments:
y,z => takes_two

The MVR function gives_two returns two results. Function composition is then
performed as follows:

gives_two => takes_two

This syntax allows the function composition in formula 4.1 (for n = 2) to be
expressed as:

vallval2 => f => g

Beta’s choice of notation certainly looks familiar to programmers of the Unix
shell scripting languages, which rely heavily on program composition, and where
communication takes place exclusively with text streams. Connecting the output of
a program to the input of another (the app operator above) is done using a ‘pipe’
character (|). Raoult and Sethi [103] propose incorporating the pipe notation into
a compiled programming language.

A second syntactical alternative, postfix notation, makes composition of multiple-
value returning functions unfettered in stack-based languages, where the symmetry

between multiple arguments and multiple return values has been commonplace.

Consider the Forth version of the running example:

Lalso part of KW-C.

66



: \gives_two 2 3 ;
: \takes_two {a b} ... ;

\gives_two \takes_two

The first two lines define the functions (“words” in Forth terminology) \gives_ two
and \takes_ two. The first one pushes the values 1 and 2 onto the stack. The func-
tion \takes two pops two values from the stack and places them in the variables

a and b. The last line is an expression composing both functions.

For languages using a prefix function application operator things become more
difficult. Most languages in this category have been unsuccessful in achieving nearly
as natural a form as those outlined above and have to resort to alternative syntax
(as Beta did). Consider, for example, Scheme, which, as of the last revision of
its standard [76], includes MVR functions. However, functions returning multiple
values have to follow a particular interface, namely, generating a group of variables
with the special form values, and calling a function upon an expression generating
multiple values with the form call—with—values, which takes a closure with no pa-
rameters as a producer, and a second closure, the consumer, which is called with
the values generated by the producer as arguments. Although certain optimizations
that elide the use and overhead of these closures are possible [12], calls to MVR
functions do not resemble applications of a SVR function. They look awkward in

even simple cases, such as when using a recursive definition:

(define partition
; ‘partition’ takes a list and a predicate, and returns the list of all the
; elements of the original that comply with the predicate, and the list
; of all the elements which do not.
(lambda (I p)
(if (null? 1)
(lambda () (values '() '()))
(call—with—values (partition (cdr 1) p)
(lambda (lyes Ino)
(i (p (car 1))
(lambda () (values (cons (car 1) lyes) Ino ))
(lambda () (values lyes (cons (car 1) Ino) ) )))))))
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John McCarthy was among the first language designers to recognize the impor-
tance of MVR functions, and urged the american delegation in the Algol design
committee to include this facility in Algol 60, and made it part of even the first
incarnations of Lisp. Later, Friedman and Wise [55] extended Lisp to incorporate
easier-to-use recursive MVR functions (a facility that is almost as expressive as
CV’s). It is not surprising then, that later incarnations of Lisp, in particular ANSI
Common Lisp ([61]), with its emphasis on pure functional programming style, frown
upon the use of ‘out’ parameters and provides a special facility for the manipula-
tion of MVR functions. Any function can return multiple results that are bound
via special forms and macros: values returns its arguments (without intervening
structuring), multiple—value—bind names these values on the receiving end. This

approach increases readability, but function composition is still awkward:

(labels ( (gives—two () (values 2 3)) )
(multiple—value—bind (x y) (gives—two) (takes—two x y)))

The form multiple—value—bind binds the two values returned by gives—two via values
to the names x and y. multiple—value—bind is but one of the specific forms of
destructuring—bind, which matches more structured (nested) lists. Once the vari-

ables are bound, they can be used as arguments to call takes—two.

Other Lisp-inspired languages, even with more algebraic syntax also make use
of a similar interface for dealing with multiple values from a function. For example,
Dylan [113], a hybrid between Scheme and CLOS comes closer to the objectives
stated above. It also makes use of the values special form, but reuses the local

assignment form let to make use of the values returning from a function.

define method gives—two ()

=> (a : <number>, b :: <number> );
values( 2, 3 );

end method

let ( x, y ) = gives—two();
takes—two(x,y);

68



For Algol derivatives other forms have been proposed. Languages like Xerox’s
Mesa [91] and its successor, Cedar, treat functions as if both parameter and return
values lists were record structures. When assigning the result (or rather, the con-
tainer for the result), any variable whose structure matches the one returned by

the function is type-compatible.

gives_two: procedure returns [a,b:integer] =
begin
return [a:2, b:3];

end;

[ x, y ] = gives_two[] ;
takes_two[x,y];

This interpretation of parameters and return value lists as records is used to some

extent in CV(see page 81).

Other languages that provide for multiple-value returns are C’s forerunner,
BCPL [105], Alphard [114] and CLU [88]. While all the algebraic languages above
deal with returning multiple values, none addresses the issue of function composi-

tion of MVR functions consistently with their SVR counterparts.

Since all these incarnations of the mechanism are unappealing or do not inte-
grate well with the rest of the language (e.g., inconsistencies between single- and
multiple-value returning functions), alternate solutions to returning more than one
value from a function are usually preferred. The effect of returning multiple values
from a function can be simulated to some extent by a combination of other pro-
gramming language constructs (aggregate or ‘out’ parameters 1) or by resorting to
programming conventions, like rewriting a program in continuation-passing style.

These workarounds carry their own set of difficulties.

1*Out’ parameters can be used to trigger optimizations, for example, by returning multiple results in
registers (as it happens in languages like Ada, Sather and Mercury). If unavailable in a particular
language, the effect of ’out’ parameters can be approximated by passing extra arguments by
reference.
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Passing aggregates back and forth has the inconvenience of requiring cumber-
some and error-prone packing and unpacking. Output arguments and passing pa-
rameters by reference require additional notions such as variables, addresses, as-
signments, nonlocal side effects, aliasing, etc, that place a considerable burden on

the programmer.

Furthermore, any of these approaches involves the use of temporary variables
whose sole purpose is to immediately transfer the results from one function to
another. This use of variables is undesirable from a number of standpoints. Firstly,
it increases the data complexity of the function call that makes use of such a practice.
Data complexity is a measure of the amount of data processed by a subprogram,
and it is reflected, among other criteria, in the the number of variables declared
therein [32]. Secondly, it multiplies the places that require change should any
of the functions involved change its interface’. Lastly, for languages like (pre-
C99) C, all variables must be declared at the beginning of a block, which can
be substantially separated from the point where the function call is made (unless
“spurious” blocks are introduced by the programmer, an unsatisfactory solution),
inhibiting readability and maintainability. Languages like C99, C++ and Java
alleviate this situation by allowing the declaration of variables to be interspersed
with the statements but the variable count is still artificially (and awkwardly)

increased.

Continuation-passing style (CPS), and later the CPS-transform was first intro-
duced by Fischer and Plotkin [53, 100] and extended by Harper et al. [65] to the
typed case. It does not involve the use of temporaries, but entails its own set of dif-
ficulties. In its original form, CPS makes use of a reified form of the program state,
called a continuation. A continuation is a function that represents the “rest of the
program”, i.e., the computation that is to take place once the current computation
is done, and to which the result of the current computation potentially contributes.
Roughly described, CPS involves passing a callback, representing the continuation,

to every function. At the end of its computation, and instead of returning a value

'In the best of cases the temporary and the new interface would be incompatible, so an error is
detected by the compiler. However, it is more likely that an implicit conversion and potential
information loss would take place, leading to hard-to-find bugs.
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to its caller, the called function invokes the callback on the values it is to return.

For the running example, the use of these technique looks like:

void takes_two(int a, int b, ... );

void CPS_gives_two( void (*callback)() ) {
int retl;
double ret2;

(*callback)(retl, ret2);

}
CPS_gives_two( takes_two );

This method transforms the problem of returning multiple values to the accepting
of multiple arguments, and thus avoids the creation of temporaries. However it
requires a complete restructuring of the code, not always possible in a separate-

compilation setting.

In any case, all the approaches described in the preceding paragraphs hide the

fact that what the programmer wants to express is the composition of functions.

4.1.1 Importance of MVR functions

MVR functions make the code amenable to various optimizing transformations.
In particular, since the returned values are independent of each other, and are
passed unpacked, they could be passed back in registers rather than using the stack,
providing some speedup. Also, using more information on how the returned values
are going to be used (as arguments to a function, or assigned to new variables)

would conceivably allow for closer, more efficient caller/callee interaction.

However, performance increase is not the stated goal of including MVR func-
tions in the CV language. Even if there were no performance gains as a direct

consequence of this feature, the semantic gains alone are important for the pro-
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grammers developing or maintaining the code. If nothing else, the clear syntactic
distinction between input and output arguments at the call site is helpful to the
understanding of the intent of the code. To further illustrate this point, take for

example the following fragment which invokes function foo:
foo(il,i2,&01,&02);

It is unclear from this line whether the output arguments have to contain a sensible
value to the function when it is invoked, or if this value is modified (if “transparent”
pass-by-reference is possible, like in C++). These issues do not occur if the above

code is stated as:
[01,02] = foo(il,i2);

as it is plain now that the intent of 0ol and 02 is to receive the values returned by
a successful call to foo, and that these assignments do not interact with whatever
happens during the evaluation of the right-hand-side. Also, it is now clear that il
and 12 are not modified during the assignment or the evaluation of the right-hand-

side (unless the language allows transparent pass-by-reference).

These are all useful facts that can be extracted directly from the syntax by
the reader of the program, and the notation accounts nicely for one of the two
possible usages of the values returned by MVR functions, as the right-hand-side of
an assignment. This notation, first introduced to the C language in [26], requires
the introduction of a new construct, a tuple. Tuples also fit in with the second

usage of values from MVR functions, function composition.

The rest of the chapter describes in great detail the way tuples are included in
CV. It is organized as follows: a description of tuples and the operations on them is
presented in the next section. The implementation of these operators is described

next. Finally, additional notes on related work are briefly outlined.
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4.2 CV Tuples

Recognizing the advantage of having MVR functions in CV, its designers strived to
find the abstraction that best included this feature and integrate it as seamlessly
as possible in the overall fabric of the language. They found it in one of the most

innovative aspects of its forerunner, KW-C.

KW-C [131] includes an abstraction of argument lists, a programming language
device that is so commonplace that it is not often considered a construct in its own
right, but a mere byproduct of the function call syntax. The rationale for identifying
argument lists with tuples originally was that functions are often called with the
same arguments, so giving the list a name made it easier on the programmer,
and generated a possible compiler optimization. CV’s tuples soon transcended its
originally intended purpose by allowing the expression of a number of different

concepts.

Tuples are ordered, fixed-size lists of possibly non-contiguous, heterogeneous
elements. Such lists should be familiar to most programmers, as they appear in a
number of contexts in imperative and functional languages: parameter and argu-
ment lists, array subscripting, fields of records, etc. In all these situations, tuples
can be considered as a structuring device rather than the specification of a family
of types. CV tuples and their concomitant programming constructs constitute a
natural representation for several often-used programming devices and provide a

powerful way of expressing programming ideas.

In CV, the syntax of tuples is given by the grammar:

(tuple expression) ::= [’ (tuple expression) [\, ( tuple expression )|* ']’

| ’[" (assignment expression )? [, (assignment expression)? |+ ']

Square brackets, [], allow differentiating between tuples and expressions containing

the C comma operator. Examples of tuples are (assuming the function application
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expressions contained therein return a single value):

[ 4, f() ] // 2 values

[7, (0, 8() )] // 2 values, comma operator
[x +y ,’a ] // 2 values, hole

[ int, double, int | // 3 types

[ ’a’, [’b?,7¢c?’], ’d’ ] // 4 values, nested tuple

Tuples can be arbitrarily nested. Not all forms of tuples are legal in all contexts

where tuples are allowed, e.g., tuples with holes.

Tuples in KW-C, and therefore in CV are influenced by the set-based language
SETL [45]', which accounts for the sharp difference between this construct and
constructs of the same name present in other programming languages, like ML,
Python or Haskell. In particular, the individual elements in a CV tuple are not
directly addressable, neither by name nor index nor offset (further exposing their
potential non-contiguous nature). As well, a CV tuple does not model a sequence,
so it is impossible to cycle through the contents of a tuple. Essentially, a CV tuple is
largely a compile-time phenomenon, having little or no runtime presence. Therefore,
it is wrong to equate CV tuples with tuples in other languages because the purposes
of each are completely different. CV has different facilities and mechanisms to create

the kinds of entities called tuples in other languages.

Tuples are not first class values in CV. Their structure is also less strict than that
of records, e.g., nested tuples are implicitly flattened. When passed to a function,
tuples are implicitly opened to access their components, which are subsequently
paired with the corresponding arguments, and when returned from functions a
similar operation takes place. Functions do not return “a tuple of...”, but multiple
values of the corresponding types. The only exception is when tuples are used
in contexts that require types, specifically in declarations (when declaring tuple
variables). Tuples are best understood as a syntactical device, a shorthand notation
that is expanded at compile-time, and that has little or no run-time manifestation.

As such, their use does not enforce a particular memory layout, and in particular,

!SETL combines features suitable for symbolic programming with an imperative syntax and se-
mantics.
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does not guarantee that the components of a tuple occupy a contiguous region of
memory. Some operations that are common to values, such as querying for the
address are disallowed for tuples. Another consequence is that functions on tuples
cannot be defined. Finally, a user cannot extend the built-in tuple operation set
(described below). Essentially, tuples are used as a compile-time device to organize

information.

4.2.1 Tuple Assignment

The structure of tuples is fluid. Although tuples are permitted to nest, they are
immediately flattened when used, and their contents are implicitly extracted when
required. In particular, in an assignment operation between tuples, i.e., an as-
signment that contains a tuple expression in its left-hand side, both operands to
the assignment are implicitly flattened, and tuple variables are expanded to their
definition. The components of both sides are then paired and individual “scalar”

assignments are performed.

Holes in tuples introduce a more textured matching discipline, which is described
below, but in general, tuple matching takes place between two flat lists of values.
Once an assignment is performed, the left-hand side is conceptually restructured if

required.

4.2.2 Multiple Assignment

Multiple assignment is the straightforward extension of simple assignment to tuples
of the same size. It consists of a tuple of Ivalues being assigned a tuple of expressions,

taking the form:
[lvaluey, lvaluey, ..., lvalue,| = [expry, expry, ...expr,]

The left-hand side is a tuple of lvalues, which is a list of expressions each yielding an
address, i.e., any data object that can appear on the left-hand side of a conventional

assignment statement. Each expr appearing on the right-hand side of a multiple
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assignment statement is any standard arithmetic expression and its value is assigned
to the corresponding lvalue on the left-hand side of the statement. Clearly, the
types of the entities being assigned must be type compatible with the value of the

expression.

The multiple assignment construct has parallel semantics, which permits a

“swap” of the contents of variables to be written as:

[xy] = [y.x]

(as in the case of argument lists, care must be taken when using side-effect expres-

sions inside a tuple, since no particular order of evaluation is guaranteed by either
C or CV).

A special form of pattern matching takes place when “holes” appear in the

left-hand tuple of the assignment operator:

[int x, int y, int z] foo();
[ret, , | = foo(); // ignore last two values
[a,.c] = [xy.z] // ignore middle value

In both assignments, the rvalues in positions corresponding to the holes are ignored

by the rest of the computation (and performed only for side effects).

If a function returns lvalues, holes can appear on the right-hand side of an

assignment, as in:

[lvalue int x, lvalue int y, lvalue int z] bar();
bar() = [v1, , v3];

which results in the value associated with the second address remaining unchanged,
while the results of the expressions vl and v3 are assigned into the address specified
by the first and third return values of the function bar. Note the keyword lvalue,
a CV-specific extension for a restricted pointer on which it is impossible to perform

arithmetic and that is implicitly derefenced. lvalues are similar to C++ references.
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Mass Assignment

A convenient simplification of multiple assignment in CV is to assign a single value
to a number of different variables, an operation called mass assignment, which has
the form:

[lvaluey, lvalue,.. lvalue,| = expr;

where for all lvalue; provide the address of an object that is type-compatible with

the type of expr.

As for multiple assignment, mass assignment uses parallel semantics, which

means assignment is not equivalent to either C code fragments:

lvalue_1 = expr;

lvalue_2 = expr;

Ivalue_n = expr;
or
Ivalue_l = Ivalue_.2 = ... = lvalue_n = expr;

The first fragment causes multiple evaluations of expr, which is, at the very least
inefficient, and at worst, wrong, when an expr has side-effects. In the second code
fragment, the value of expr is repeatedly casted into the types of lvalue_n, lvalue_(n—

1) and so on, which can cause loss of information along the way.

Parallel assignment semantics, ensures expr is only evaluated once, precluding
side-effect problems, and this value is assigned to each of the lvalues so that only

the minimum typecasting takes place between lvalue_i and expr.

4.2.3 MVR functions in CVY

The introduction of tuples to CV permits the specification of functions returning

multiple values that are consistent with SVR functions and, consequently, user’s
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expectations. The result is a natural extension of C’s syntax and style:

[int, int, int] gives3(int);
[x, vy, z] = gives3(x);

Here, gives3 returns three values, which are assigned left to right into variables x, y

and z. Or, if composing gives3 with another function:
takes3( gives3(w) );

where the multiple values generated by gives3 become the arguments of takes3.

A MVR function declaration may or may not associate names with the compo-
nents of the return tuple:

[int, int, int] foo() { ... } // unnamed return values

[int x, int y, int z] foo() { ... } // named return values

In the second form, the return-tuple component names become local variables in
the function just like parameter names. This form introduces a similar facility to
the short-lived gcc “named return values” extension'. There are several ways a

MVR function can return a result:

[int %, int y, int z] foo() {

[int, int, int] temp;

// case 1:

return temp; // use of a tuple variable,

// case 2:

return [3,4,5]; // return ‘“‘tuple literal”

// case 3:

.y, 2] =[345];

if( x == 4 ) return;

// “fall-off” the function (implicit return)

}

!Michael Tiemann, with help from Doug Lea, provided named return values in g++, circa 1989
[86].
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Cases 1 and 2 directly return a tuple value. Case 3 indirectly returns a tuple value
through the named tuple variables, i.e., a return; or fall-off the end of a function
is rewritten to return [x,y,z];. The named case can help the compiler to optimize

out unnecessary copying of temporaries from the function to the call site.

It can be seen that Mesa’s (§4.1) design has been highly influential in this

language extension.

4.2.4 Named parameters

Syntax imposes significance in the ordering of the parameters in a function that is
not always warranted. This ordering has to be respected when calling the function.
However, when using library functions, coming from a variety of sources, there is
no hope for a universally respected convention regarding the order of arguments.
Changing an interface is not always possible or even desirable, so a method of
placing the sources of the parameters in the right position in the function call is

required. This issue compromises the flexibility of function composition.

Recognizing this fact, CV includes keyword parameters. Keyword parameters
[64] introduce an alternative ordering to the traditional by-position in parameter
lists, by also adopting indexing by name, thereby rendering argument lists isomor-
phic under permutations. They also provide a dual for the named return values of
an MVR function. That is, keywords can be used in an argument list to directly
connect arguments to parameters, which is especially useful to rearrange tuples
returned from an MVR function called as an argument. In CV, having different
names for parameters or return values in a function declaration (as a prototype)

and later in its definition is considered an error.

Named parameters have been a part of programming languages since the early
days of programming languages. Parameters are usually accessible by name within
the function body!, but, in most programming languages, not from the point of

invocation. It is often inconvenient for a programmer to remember the order of a

! Although admittedly primitive programming environments like most Unix shells or the TEX type-
setting environments use the position of a parameter to refer to it.
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function’s arguments, and accidental transpositions are not detected by the com-
piler, causing hard-to-find bugs. For a reader of the same code, things are not clear
either, even when there is appropriate documentation or programming conventions
that use (possibly temporary) variables named after the corresponding parameters,

or that make clear what the purpose of the argument is.

Clearly in many contexts the order of parameters is either highly conventional
(as for geometric coordinate systems) or immaterial (a function that is intension-
ally equivalent under a permutation of its arguments, as is the case, for example,
with a binary commutative operator). In CV, functions can be called with a mix-
ture of positional and named arguments. While named keywords alone increase
the expressiveness of a programming language, they are particularly useful when
combined with other features, particularly default parameters, and composing MVR

functions. Consider the following examples:

1 [int, int] foo();

2 void bar(int a, int b, int c);

4 bar(foo(), 3);

5 bar(3,fo0());

6  bar([c,a]:foo(), b:3);
7 bar([a,]:foo(),2,3);

8  bar([,a]:foo(), 2,3);

In lines 4 and 5 above, the values being returned by function foo are matched with
the arguments of bar based on their positions, in the usual fashion. However, it is
unlikely that the writer of an MVR function knows the order the returned values are
going to be required by other functions in a program. A designated tuple makes this
knowledge unnecessary, as the order in which these arguments are to be matched
with the parameters of the receiving function is explicitly specified. For example,
in line 6 above, the results of foo are paired with arguments ¢ and a respectively,
whereas argument b is given by the integer 3. Furthermore, not every value from
the MVR needs to be used. Any returned value can be discarded by the calling
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function, as illustrated by the last two lines in the example. In line 7, the first value
from foo is paired with a, while the second is ignored; in line 8 the exact reverse is

done.

Default values for parameters have been included in a great variety of program-
ming languages. CV adopts C++ syntax for this facility, so default parameters

follow each parameter’s declaration in a function declaration, e.g.,
int foo(int x = 10, char abc = ’a’);

Also adopting a widespread convention, CV requires all parameters that do not take
default values (also known as positional parameters) to be listed first, followed by

the ones with default values.

Technically, overloading and default parameters are redundant, since it is possi-
ble to achieve the effect of default parameters exclusively by means of overloading.
This, however, requires a function declaration for each possible form of call, result-
ing in linear growth. As well, overloading cannot handle default arguments in the

middle of a positional list, via a missing argument, such as:

p(1,/* default */,5);

The pattern-matching taking place between the function call and the function
parameter list results in a rewritten call (and several assignment to temporaries),
this time undesignated, that achieves the same effect. In brief, the matching process
takes place by first constructing an ordered list of the parameter names of a function,
and maintaining a pointer to the last bound parameter (initially, the first of the list).
Upon an undesignated reference, the pointer moves forward to the next unbound
parameter, which is then bound to the argument. When encountering a designated
reference, the corresponding argument is bound, but the pointer does not move. At
the end of the argument list, all unbound parameters take their value from their
defaults if they exist. The “holes” in argument lists are matched positionally to

the parameter list.

These pattern matching rules can be more formally described in terms of the

81



well-known relational algebra operators projection (), renaming(p), cross product
(x) and a nontraditional join (X) [42]. Under this interpretation, a function call
is treated as a record operation. Each function call in the argument list is repre-
sented by its name, and it stands for its return value, which is always a (possibly
one-) tuple; also, the argument-list comma delimiter stands for the cross product
(concatenation) of tuples. The first step, the possible filtering of some of the val-
ues returned from a function, can now be expressed as a projection based on the
position of the values in the return tuple. Furthermore, the rearrangement of argu-
ments can be perceived now as a renaming followed by a (non-standard) join. For

example, given the function declarations:

foo(int a,int b);
[int,int,int] bar();

the relational algebra formulation of the function call foo( [,b,a]: bar() ) is:

fooXey pyo(ma3(bar))

where the second and third results from bar are selected (via the projection s 3),
then renamed to b and a respectively (py,), and finally joined (X, for CV’s inter-

pretation of a join) to the parameter list of foo.

It is easily noticed that the operation represented here as a join is not the

traditional relational-algebra natural join, although its similarity is conspicuous.

These rules for matching arguments to parameters in function calls are also
used to match initializers to fields when initializing aggregates, with two differ-
ences: the pointer always points to the last field initialized, whether designated or
undesignated. Furthermore, a member can be referenced in an initializer list multi-
ple times, either via designation or by being indicated by the current field pointer.
Only the last value paired with the member takes effect. For function calls, re-
peated references to the same parameter via designation are considered errors. All

these related operations are illustrated in figure 4.1.

If it so happens that after rearrangement the call still matches more that one

function due to overloaded symbols, the minimum conversion cost [16] rule is used
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foo = (a,b,c); foo = (a,b,c);

bar = (b, ¢, d); bar = (b, ¢, d);
foo X bar = (b, c) foo Xie s bar = (a,b,c)
(a) Natural Join (b) Left Join

struct { int a, b, ¢ } rec = { b:3,4; }; // {unitialized, 4,3}

(c) Record Initialization

int foo(int a, int b, int ¢ = 10);
foo(b:3,4); // foo(4,3,10);

(d) Argument list rearrengement

Figure 4.1: Name driven matching

to disambiguate the call. Essentially, this rule chooses the option that entails

the least number of intermediate conversion (safe and unsafe) and specialization

operations.

All these facilities together allows for a clean description of certain algorithms.

For example, consider a function that takes a string and returns a permutation

of it, “pivoted” around the center, that is, for the word "overhang" it returns

"hangover", for the word "overturn" it returns "turnover", etc. A CV implemen-

tation of such a function, in terms of two auxiliary functions, split and concatenate

(a multi-valued version of the Standard C library’s strcat) is:

[char *s1, char *s2] split( char *s );

char *concatenate( char *sl, char *s2 );

char *mirror( char *s ) {

return conatenate([s2,s1]: split(s));

}
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4.2.5 Records and Tuples

Records (structs in C parlance) are another instance of an ordering relationship
unwittingly introduced by the language, this time among the fields. Since field se-
lection in struct instances is done in terms of names, the existence of this position-
based ordering is not really an issue, except for initializers, where the (textual)
layout of the structure has to be mimicked by the initializing expression. C99 rec-
ognized this fact and introduced designated initialization (for structs and unions),
where each initializing expression is qualified with the name of the field it applies

to. For example:

struct point {
double x,y;

int color;

}

struct point pl = { color=RED, 3.0, 4.0 };

CV adopts this innovation with a slightly modified syntax (the assignment sym-
bol is replaced by a colon), and naturally extends the definition of designators to
include name tuples. For example, an instance of the type struct point in the above

example:

struct point pcfa = { color: RED, [y,x]:3.0 }

Tuple assignment and function calls can also be used when selecting multiple

fields of a structure, since CV allows the field selection operator to take a name
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tuple to refer to multiple members of a struct instance:

struct st {
int x,y;
double z;
} sl, *s2;

sl.x,y] = [2.3]; // multiple assignment
s2—>[y,x] = 5; // mass assignment

4.3 Implementation

Till [131] implemented a first-approximation of most of the operations described
above (barring MVR function composition) for KW-C, an extension of the C pro-
gramming language. The CV language, as described in [16] enriches the C language
with parametric polymorphism and overloading, and the type resolution algorithm
accounts for MVR functions. However, this work did not include tuples and their
extended assignment forms, nor did it account for the code generation of this forms
or MVR functions. The remainder of this section fills in these gaps. First, exten-
sions to the type resolution algorithm mentioned above are described to account
for various constructs resulting from the introduction of tuples. Finally, the code

generation algorithm for these forms is presented.

4.3.1 Tuple expression analysis

Traditional overload resolution algorithms rely on the correspondence of the num-
ber and position of arguments in a function call with the number and position
of the formals in a function definition. The not-so-traditional Baker-Ditchfield-
Bilson[16] overload resolution algorithm also consider functions returning multiple
values, but still assume positional correspondence. When named parameters are
thrown into the mix, this assumption must be discarded, and further generalization

of the algorithm is needed.
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C¥’s overload resolution algorithm receives an untyped expression tree and it
returns a typed tree, where each of the function calls therein resolved to a unique
function in the program. The whole expression tree is then uniquely interpreted.
This resolution process takes into account not only the number and type of the
arguments to the functions, but the types of the returned values as well. It also
accounts for functions returning multiple values and C’s implicit type conversions.
A full account of the algorithm is given by Bilson [16]. Suffice it to say here that
it works in a bottom-up fashion, keeping track of every possible interpretation
for each subexpressions and picking from among them once information on the
context becomes available. A conversion-cost-based tie-breaking scheme is used to
disambiguate calls. For tuples, this policy changes somewhat. The assignment that
is finally performed is the narrowest type that applies to all the tuple’s components.
This policy ensures that expressions are evaluated only once, but may result in
different effects than the pairwise macro-expansion interpretation. In fact, it might
be the case that a tuple assignment is termed “invalid” by the system, even if the

pair-wise expanded form has a valid interpretation. Consider, for example, the case:

double foo();
int *foo();
double d;

int *pi;

d = foo(); pi = foo(); // fine, 2 calls

[ d, pi | = foo(); // invalid assignment (no narrowest type), 1 call
4.3.2 Tuple code generation

Multiple assignment

Once expressions have been matched on both sides of an assignment, temporaries
are generated for each pair of left- and right-hand values. The former consist
of variables of pointer type that take the address of the left-hand operands of
the assignments, whereas the latter store the value of the right-hand operands.

Although this strategy might seem like a superfluous generation of temporaries, it
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is necessary to ensure that expressions on either side are evaluated only once. The

result can be seen in figures 4.2 and 4.3.

Mass assignment

A temporary is generated for the right hand side, and as many temporaries as are
required for the left hand side. This allows the right-hand-side expression to be
executed only once (with the corresponding side effects executed only once). The

result is illustrated in figures 4.4 and 4.5.

MVR functions

As outlined in section 4.1, there are several options for the simulation of the effect
of MVR functions in C'. Consider the CV program:

[int, int] divmod(int g, int d)

{

return [ q divd, q % d |;

}

void display_pair(int, int);

display_pair(divmod(a,b)); // use

A first approach is based on packing and unpacking of structures, which is the

IThere are even more than the ones illustrated here. For example, the use of coroutines, which
generates code too complex and inefficient to be seriously considered.
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[iy[il2] = [a + b,i.3];

(a) CY version

int *__tpl_lhs_4;
int __tpl_rhs_5;
int *__tpl_lhs_2;
int __tpl_rhs_3;
int *__tpl_lhs_0;
int __tpl_rhs_1;
(_-tpl_lhs_0=(&__i__i));

(__tpl_rhs_1=(__a__i+__b__i));
(__tpl_lhs_2=(&__y__A0i[((long int )__i__i)]));
(__tpl_rhs_3=__i__i);
(__tpl_lhs_4=(&__z__i));
(-_tpl_rhs_5=3);
((*__tpl_lhs_0)=__tpl_rhs_1);
((*__tpl_lhs_2)=__tpl_rhs_3);
((*__tpl_lhs_4)=__tpl_rhs_5);

(b) C translation

Figure 4.2: Code generation for a multiple assignment statement
Doyl = [yx;

(a) CY version

int *__tpl_lhs_2;
int __tpl_rhs_3;
int *__tpl_lhs_0;
int __tpl_rhs_1;
(__tpl_lhs_0=(&__x__i));
(__tpl_rhs_1=__y__i);
(__tpl_lhs_2=(&__y__i));
(__tpl_rhs_3=__x__i);
((*__tpl_lhs_0)=__tpl_rhs_1);
((*__tpl_lhs_2)=__tpl_rhs_3);
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[iy[i].2] = foo();

(a) CY version

int *__tpl_lhs_4;

int *__tpl_lhs_2;

int *__tpl_lhs_0;

int __tpl_rhs;
(__tpl_lhs_0=(&__i__i));
__tpl_rhs=__foo__Fi__());
__tpl_lhs_2=(&__y__A0i[((long int )__i__i)]));
__tpl_lhs_4=(&__z__i));
(*__tpl_lhs_0)=__tpl_rhs);
(*__tpl_lhs_2)=__tpl_rhs);
(*__tpl_lhs_4)=__tpl_rhs);

(
(
(
(
(
(

(b) C translation

Figure 4.4: Generated code for a mass assignment statement

[xy] = a + b;

(a) CY version

int *__tpl_lhs_2;
int *__tpl_lhs_0;
int __tpl_rhs_1;
(__tpl_rhs_1=(__a__i+__b__i));
__tpl_lhs_0=(&__x__i));
__tpl_lhs_2=(&__y__i));
(*__tpl_lhs_0)=__tpl_rhs_1);
(*__tpl_lhs_2)=__tpl_rhs_1);

(
(
(
(

(b) C translation

Figure 4.5: Generated code for a mass assignment statement
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technique KW-C adopted in its translator:

struct __divmod__Ret { int x; int y; } divmod( int g, int d ){
struct __divmod__Ret ret;
retx = q + d;
rety = q * d;

return ret;

}

/* use */
struct __divmod__Ret rec = divmod( a, b );

display_pair(rec.x, rec.y);

CPS, as described above, could also be used. Any of these approaches would
profit by additional information at the call and within the function, namely how
many and/or which return values are actually used at the call site. Such information
can be utilized to optimize the call, since the callee need not compute unused results.
Since C’s arguments are unmoded, and can be aliases of one another, an optimizer

for these expressions is non-trivial.

The current incarnation of the CV translator rewrites MVR functions to take ex-

tra by-reference arguments. It also rewrites every return statement in the function
body.

[ int a, int b | gives_two();

gives_two();
[x,y] = gives_two();
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generates:

void gives_two(int *a, int *b );

{

*__tup_x = &x;
¥__tup_y = &y;
gives_two(__tup_x, __tup_y);

}

The case of composition with tuple designation is more interesting. This process
takes place in stages: conceptually, an auxiliary multiple assignment statement is
generated, taking into account all the potential rearrangement of arguments. The

following CV code

void takes_two(int a, int b);
takes_two([b,a]:gives_two());

is transformed, in stages, to:

[._tl, __t2] = gives_two()
takes_two(__t2, __tl);

and then (C) code for it is emitted as output, generating the following:

{
{

*__temp_tl = &__tl;
*__temp_t2 = &__t2;
gives_two(__temp_tl, __temp_t2);

}

/* rearrange arguments */
takes_two(__t2, __t1);
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4.4 Related work

Jaakko Jérvi’s tuple library [72] (now part of the boost [19] library suite) makes
use of the template facilities in C++ and the so-called type lists [7] to add MVR
functions to C++.

Matrix-manipulation languages like APL and Matlab allow for a wide range of
modification of the form of its argument list via vector multiplication and matrix
transposition. These operations, however, are not generalizable to heterogeneous

lists.

Rearrangement of argument subexpressions via designators is a consequence of
having keyword or named parameters in the language. It is surprising that, given
the formal similarity of this facility with records, features of this nature have not
been more widely studied. Two extensions to the A-calculus that take into account
record-like function calls and modify the substitution rules accordingly are Garrigue
et al. “label-selective” A-calculus [59] and Laurent Dami’s A-N calculus [41]. The
latter is especially interesting as it uses designated argument lists as the basis for

a record- and object-calculi for general software composition.

Similar behaviour to CV’s designated call can be achieved, in a much limited
form, in Haskell via the library functions curry, uncurry and, in particular flip,
which is a combinator that returns a function with its two arguments reversed.
These facilities rely on the presence of closures, currying, and partial application
(slices) in the language. Although these features make it possible for (positional)
argument rearrangement to be written as a library, the library approach does not
scale to handle tuples of greater length. It is worth pointing out that, in contrast
with CV’s approach, Haskell modifies the function to be applied (flip returns a

function) rather than the argument list.

Languages that use similar function-modifying mechanisms, like Lisp, Scheme,
and, most notably, Dylan macros can also be used to achieve functionality similar
to CV’s designated calls, in the same sense that the Haskell approach does. If a
non-standard Lisp with reflective extensions is used, modification of the argument
list is possible. Such an approach, however, is likely to introduce a sublanguage for

characterizing the rearrangement similar to CV’s name tuples. Either way, these
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options require the presence of a very powerful and deeply embedded macroproces-

SOr.

The C++ and Haskell approaches are inherently limited by having to hard-
code the length of the tuple. This is derived from limitations inherent to their
type systems. More powerful type systems, that include dependent types [141]
are needed. Currently, there are very few languages that include this facility. An
example is Lennart Augustsson’s Haskell-inspired Cayenne [13]. Cayenne allows
the user to write functions over tuples of any length (the most common example is
an n-ary zip function). Tuple rearrangement, however, requires more complicated

annotations on the tuple than just the length.
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Chapter 5

Attributes

A program is often perceived as the description of a process in terms of a compu-
tational model. This view focuses on the programmer directing a computer to the
solution of a problem. Higher-level programming languages enable a more expres-
sive description of a solution, but also add content to the program, and participants
in the interaction. A program can now be viewed as a message, whose content is

more than just a computational mechanism.

For example, there are fragments in the program text that are directed to pro-
grammers rather than the computer, such as const, access qualifiers and other
annotations, e.g., comments and variable names, that indicate how objects in the
program are meant to be used. Naming conventions often make up for features
missing in a language. For example, to address the lack of modules, identifiers in
C are often prefixed with a library name; also, type variables in C++4 STL code
are named after the concept they model [58, 14] in an attempt to compensate for
a lack of features to constrain generic types, like CV’s contexts or Haskell’s type
classes. Lack of contexts or type classes (and functional dependencies [75]) also
forces programmers to express relationships using naming conventions, like that
between type int and its minimum and maximum values by identifiers INT_MAX,
INT_MIN. In fact, it seems that carefully named identifiers are often used when-
ever a relationship between an object and other parts of the program cannot be

expressed by linguistic means.
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Other program fragments address the implementation of the computational
model, directing the process of code generation, aiding the linking phase, or en-
abling the generation of runtime checks by manipulating a host of options and
features, often in the form of “pragmatic comments” or pragmas. Pragmas are
often given special syntax in the language, but this is not always the case. For ex-
ample, C’s type qualifiers register or inline are truly pragmas, since they supply
information to the code generation mechanism. Having a non-ad hoc syntax for at-
tributes allows for clearly-marked direct-communication between the programmer
and the compiler. It also provides a unified interface to this kind of communication.
Some compilers, like gcc extend the language to allow for richer pragma syntax in
the form of attributes, which interface with the compilation/optimization process.
The programmer can annotate only certain objects (functions, variables or types),
which are called targets, with attributes. gcc attributes cannot be extended and

only direct the compiler’s translation.

However, it is possible to generalize attributes further. Ada, for example, uses
attributes to communicate information both to and from the translation system and
the programmer. In Ada, targets of attributes include program units (modules),
labels, types, etc. Attributes contain information about targets such as string
representation, version, low-level representation details (e.g., size and alignment
of types), and relationships between entities, e.g., the base type of an access or
constrained type. The list of attributes, although large, is fixed and determined
by the language specification [71]. Compiler implementors may extend it, but not
application programmers. Despite this limitation, programmers are allowed some
degree of flexibility, since they can override the behaviour of certain attributes,
specifically marked in the standard as specifiable, as long as the attribute’s interface

is respected, i.e., its target, extra parameters and return type.

Languages descending from Ada, like VHDL (VHSIC Hardware Description
Language), generalize this rule by allowing programmers to declare their own at-
tributes thereby providing a more general code annotation mechanism. Targets,
however, are a restricted and fixed set of entities in the language. Attributes in
Ada and VHDL can be queried for their value by an attribute expression, which

consists of a reference to the target suffixed with the attribute name and extra
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parameters, if needed. Ada attributes provide a hook for extensibility in related
development tools, like compilation managers and compilers, which take advantage

of the attribute syntax to enable enhanced communication with the programmer.

Code annotation is also provided in C#, with a mechanism also called attributes.
C# attributes are patterned after those in the DCOM and CORBA interfacing
mechanisms. As in VHDL, attributes can be extended (user-defined attributes are
known as custom attributes). The attributes predefined by the language furnish the
programmer with the possibility to configure a great number of code generation fea-
tures that are hardcoded in most programming languages, e.g., marshalling policies
for distributed communication, memory layout, etc. Targets of attributes include
all static language constructs. At runtime, targets can be queried for the value of
their associated attribute values, which are stored is a special “metadata” table.
C# attributes are extensively used by compilers, validation tools and execution

environments.

Viewing the program as a message, and having multiple interested recipients
(compiler, development tools, runtime), it is fair to ask whether programmers could
profit from programmatic access to the source code, annotated or otherwise. Pro-
grams that can access their own source code have long been thought of as mere
curiosities (e.g., the so-called quines, programs that print their own listing). How-
ever, metaprogramming, i.e., the ability to manipulate source code as data coupled
with a means to automatically generate code, allows for extremely generic code
that is customized at compile- or even run-time to great gain in adaptability and
performance. Metaprograms, or programs that specify how other programs should
be generated, are the subject of study in the field of Generative Programming [40].
As a side effect, when a program can access its own source code, an additional

mechanism to query code annotations is reduced.

When access to some aspect of the source code is required by a programmer,
it is common to resort to a hand-duplicated version of the program fragment (e.g.,
C++'s “smart enumerations” [126] expect the programmer to provide the enumer-
ation constants twice: one in the enum and another as a string), or to circuitously
deduce it from the program (e.g., the type traits C++ template library takes ad-

vantage of the Turing-completeness of the template instantiation mechanism to find
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out type properties by observing the effects of the overloading resolution process).
Both these solutions involve either tedious and error-prone programming practices,
very detailed low-level knowledge of the inner workings of a language mechanism
or compiler, or, in the case of C++ template metaprogramming techniques, the use
of a very powerful mechanism for other purpose than it was intended. It should
be possible for the language to allow these problems to be expressed directly, given
that the information is already available within the program text or the compiler’s
symbol table. Furthermore, the compiler is privy to information about the execu-
tion environment of a program. Access to this information can significantly add to

the flexibility and adaptability of a program.

A mechanism that provides a unified access to the source code and certain as-
pects of the execution environment is that of refiection, which is described in the
following section. Reflection is not the only way to enrich program entities with
annotations accessible programmatically, and some of the alternatives are discussed
in the following section, in particular with regards to types. CV’s attribute mecha-
nism is then presented, consisting of a combination of already in-place mechanisms
like overloading and new attribute mechanisms. Finally, some related work is men-

tioned.

5.1 Reflection

The original meaning of computational reflection is the ability of a program to
inspect and manipulate itself at the source-code level. Mainstream programming
languages that incorporate this concept, like C# and Java, extend the scope of
the reflection mechanism to include the program state and its execution environ-
ment. This section concentrates on the aspect of reflection that relates to program
code. Program-code reflection usually involves two operations: reification, which

translates program fragments to data, and splicing, which does the reverse.

Full reflection is an ambitious goal, and few programming languages provide
it. However, even a limited set of reflective features is useful. Reification could

be limited to certain kinds of language constructs, as could be the operations on
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these representations, or the form in which they are spliced back onto the running
program. Depending on the operations allowed over code-fragment representations,
a classification of reflective systems is possible [44]. If the reified data is available
only for querying, the system is said to provide introspection; if write access to
the representation is allowed, the system has linguistic or structural reflection; and
finally, if an updatable program representation includes aspects of the semantics
of the programming language, e.g., evaluation order of arguments, the system has
behavioural or computational reflection. In systems with linguistic or computational
reflection, a reified program representation can be modified and spliced into the
running program, allowing for the possibility of run-time code generation. However,

this possibility is not considered further in this work.

Computational reflection was first introduced in the context of Lisp [117], a
language whose uniform representation of code and data makes the problem of
reification /splicing that of (quasi)quoting/evaluating. Other languages with similar
uniformity, like Prolog, soon started benefitting from metaprogramming techniques,
and it has become part of the Prolog lore to modify the usual search strategy, im-
plement explainers or debuggers, and similar applications by replacing the standard

evaluation function using “metacircular interpreters”.

Interpreted, dynamically-typed programming languages can benefit from reflec-
tion very naturally, since they can encapsulate the interpreter itself as a function
taking a string argument containing a code fragment and interpret it. Results and
effects (e.g., new object creation) contained in the code fragment can all be read-
ily incorporated into the running process. Interpreted, object-oriented dynamic
languages take a more systematic approach to program representation. Usually, a
language-provided framework, known as a metaobject protocol (MOP) [79], pro-
vides an object-oriented interface to the inner workings of the runtime and program
representation. Through the MOP objects, the program can be queried, navigated
and manipulated. The resulting flexibility of this design accounts for much of the

adaptability of programs written in languages like CLOS or Smalltalk.

In statically-typed languages, the problem of reflection is more complicated, and
only recently the first complete implementation of a metacircular interpreter for a

Turing-complete, statically-typed language was presented by Laufer and Odersky
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[85]. Due to the current prominence of applications that require security, adapt-
ability, persistence, and a host of other characteristics that reflection enables, much
interest in reflection for statically-typed programming languages has arisen (see, for

example, Stemple et al. [120]).

Perhaps the most complete interface to the state of the execution and program
representation in a statically-typed language is that of the SML dialect of ML.
The SML of New Jersey interactive compiler provides metaprogramming and sep-
arate compilation by externalizing various internal compiler representations and
processes to make them available to ML programs, a technique rendering a wvisible
implementation of the compiler and supporting runtime libraries [11]. Although not
everything in a ML program can be manipulated, the available externalized entities
coupled with code annotations have been sufficient to enable interesting applica-
tions, such as the SourceGroup library [109], that plays the role of make in a C/Unix
environment, Blume’s foreign function interface [18], or Tolmach’s debugger [132],
which works by automatically instrumenting source-code and provides traditional

breakpoint/watch mechanisms, reverse execution, checkpointing and replay.

However, this sort of uniform interface and powerful interaction with the state of
the program is very rare. Currently, most mainstream statically-typed languages
like Java or C# include a limited, yet useful set of reflective features. In this
work, I focus on the introspection aspect of reflection, comprising the ability to
programmatically examine (not modify) various program objects, especially types.

Code that take advantage of this ability is robust to changes in the definition of
types.

5.2 Introspection

As mentioned above, introspection is the read-only access to the program repre-
sentation. A minimal set of introspective capabilities are usually included in most

languages. For example, introspective features have been part of C since its in-
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ception, via the C preprocessor!. Programmers have programmatic access to the
current file name and line number via the __FILE__ and __LINE__ macros respec-
tively. Aspects of the compilation environment can also be captured from the value
of environmental macros, such as __STDC__, a boolean that determines whether
the compiler is Standard-C compliant, or __DATE__, that provides the system’s
date. Due to the nature of the C preprocessor, certain information is not accessible
through macros. In particular, the preprocessor is blind to function names and any
scope considerations, which forced the C99 standard to extend the introspective
information in a different way by introducing the predefined identifier __func__,

which is declared implicitly (if used) within a function as:
static const char __func__[] = "function-name";

where function-name is the name of the function the identifier is used in.

Other introspective information the C compiler makes available is accessible
through a somewhat inconsistent and disconnected interface, consisting of the oper-
ators address-of (&), sizeof and offsetof, and __alignof__, typeof, and address-
of-label (&&) as gcc extensions. Access to the environment is also done in C via

operating-system calls.

Introspection of types is particularly useful, as it allows programmatic access
to structural properties that are important for transmission or manipulation of
data in the program. The only information C discloses on a type is lower-level
representation information, via sizeof, offsetof, etc. In C++, better introspection
facilities can be built via conventions and abstraction mechanisms, which allow for

the compile-time annotation of types.

A C++ idiom, known as trait classes [95], is used to annotate types at compile
time. A trait class is a compile-time device that permits the annotation of a type
with information such as associated values and types. A trait is a template class
that encodes values and types associated with its type parameter. This idiom relies

on partial template specialization, which permits the template creator to specify a

!These capabilities constitute one of the reasons why the C preprocessor is so difficult to eradicate,
despite its myriad detractors.
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template <typename T> struct my_type_traits {
static string get_string() { return "unknown"; }

¥

template <typename T> struct my_type_traits<T *> {
static string get_string() {
return "pointer to " + my_type_traits<T>::get_stringrep();

}
h

template <> struct my_type_traits<int> {
static string get_string() { return "int"; }

I8

cerr << my_type_traits<int>::get_string() << endl; // “int”
cerr << my_type_traits<int *>::get_string() << endl; // “pointer to int”
cerr << my_type_traits<char *>::get_string() << endl;// “pointer to unknown”

Figure 5.1: Example of C++ trait classes

“primary template” for general types, more specialized versions for types of certain
structure and completely specialized versions for specific types. With this mecha-
nism, C++ provides a minimal pattern language, based on type constructors (not
to be confused with class constructors). An example of a trait class is shown in

figure 5.1.

There are several libraries that encapsulate information about a type in trait
classes. Among these, the best known is type_ traits by Maddock et al. [89]. The
information contained in these classes includes inheritance details (e.g., whether a
class is derived from a particular base class), and type ordering (whether there is an
implicit conversion from a type to another). Providing this information as a library
has the advantages that no language or compiler modifications are necessary, and
that extensibility is guaranteed. However, the information accessible in this way is
limited. Proposals for linguistic support for type information have been submitted
to the C4++ Standardization Committee [121], as have proposals for more general

compile-time reflection facilities [134, 73].
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For programmatically-accessible annotation of program entities, types, in par-
ticular a C programmer must resort to the creation of a runtime type system, like
that of the GNOME GObject library [128], a framework that provides aspects of
the C type system at runtime. In particular, each (registered) type in the system is
uniquely identified by a number, which then allows for the association of arbitrary

information via a dictionary.

C++’s runtime type information (RTTI) facility allows for the annotation of
types, both built-in and user-defined [123]. The compiler generates some informa-
tion per type (including a string representation of the type name and a suitable
equality test between type data-objects) and stores it in instances of class type_info,
which are (read-) accessible via the function typeid. typeid takes the name of a type
or an expression, and returns the corresponding type_info object. The design of
type_info allows for extending type information, e.g., by building dictionaries in-
dexed by type name. This form of introspection, although useful, is limited. For

example, an instance of a class cannot be queried at runtime for its public methods.

Compared to C and Ada, Java includes powerful introspection capabilities, that
allow for the easy development of meta-language facilities such as class browsers
and interactive program generators. More interestingly, they provide for object
serialization in the form of a library, where serialization is the process of writing

or reading an object to or from a persistent storage medium, such as a disk file.

5.3 CV attributes

Because CV is based on C, it can use C’s previously mentioned mechanisms to access
information about a program and its execution environment. Interestingly, C’s ad
hoc introspection mechanism for types (e.g., INT_MAX) can be better expressed
through CV’s powerful type system by using programming idioms and conventions.
This solution, however, does not apply to all introspection needs. To provide for
these additional needs, I have designed and implemented a new mechanism, inspired
by Ada attributes that integrates well into the existing syntax and semantics of

CV. This mechanism unifies several ad hoc mechanisms in C, its preprocessor
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and runtime system. Both programming conventions and the new mechanisms for

introspection are described in this section.

5.3.1 Idioms and conventions

All the introspection capabilities described above for C also apply in CV. Moreover,
compile-time type annotation is also available, as in C++, via the overloading

resolution mechanism, e.g.:

forall (type T) string get_type_string(T t) { return "unknown"; }
forall (type T ) string get_type_string(T *t) {
string ret = "pointer to ";

return ret + get_type_string(*t);

}

string get_type_string(int i) { return "int"; }

Since the CV type system allows for overloading of variables, this technique is
also useful to designate special values associated with a type. The exact relation
of the value with the type is given by an appropriately descriptive variable name.

Consider, for example, types with a mazimum value, like those shown below.

int max = INT_MAX;
float max = FLOAT_MAX;

forall( type T | { T max; T end; _Bool ?!=?(T, T);
_Bool ?<?(T, T); _Bool ?>=?(T, T);
T >>(istream is);} )
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T find_min(T lower_bound) {

/* read Ts from an input stream, find min from read values
greater than lower_bound */

T cur = max;

while( cur !=end ) {
T temp;
is >> temp;
if ( temp < cur && temp >= lower_bound )

cur = temp;

}

return cur;

}

find_min(7); // uses maz = INT_MAX
find_min(—3.14); // uses mar = FLOAT_MAX

Although naming conventions allow for certain forms of type annotation, it is
not useful for the association of arbitrary data with types. Therefore, a specialized

mechanism is needed.

5.3.2 Attribute mechanism

There is interesting information about the program that is inaccessible through the
overloading resolution process or any other mechanisms within the language. To

gain access to it, a new mechanism is necessary, that of attributes.

Rather than Ada’s suffix notation, CV adopts a prefix function-like notation,
which makes clear that the association is done on types, while reusing a familiar
syntax. CV’s attributes are regular C identifiers prefixed with the character ‘@Q’.

Their use in expressions follows the grammar in figure 5.2.

Attributes allow for the provision of a minimal program representation through
which limited introspective capabilities are provided. Most reflective systems assure
consistency between the reified program representation and the actual program by
“opening” the compiler and providing hooks into the intermediate representations.
CV takes an alternative approach, which can be described as lightweight [49]: the
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attribute_identifer)
(" (type_name) )’
(" [ (assignment__expression) | ’)’

(attribute_expression) = {
| (attribute_identifer) ’
| {attribute identifer)’

Figure 5.2: CV attributes grammar

translator generates language objects that provide access to the compiler’s program
representation. This strategy removes the tension between having a representation
that is convenient to manipulate by the programmer and at the same time effi-
cient to implement by the system. On the other hand, since the representation
of the program is created by the compiler from what the compiler itself is using,

consistency is also guaranteed. Consider the following example:

enum work_week { MON, TUE, WED, THU, FRI, };

for( enum work_week day = @enum_first(work_week);
day <= @enum_last(work_week); day= ©@enum_next(day) ) {
printf("Opening hour in day %s: %d\n", @enum_name(day), op_hour[day]);

}

becomes:

enum work_week { MON, TUE, WED, THU, FRI, };

char *__enum_name( enum work_week e ) {
switch( e ) {
case MON:
return "MON";
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enum work_week__enum_next( enum work_week e ) {
switch( e ) {
case MON:
return TUE;

}

}

for( enum work_week day = MON; day <= FRI; day = __enum_next(day) ) {
printf("Opening hour in day %s: %d\n", __enum_name(day), op_hour[day]);

}

Notice that certain built-in attributes are compile-time constants, and are inlined.

This strategy allows for declarations of the form:

int hours_per_day[ @enum_size( enum work_week ) |;

A listing of CV’s expression-returning built-in attributes is presented in table 5.1.
The attributes @enum_next () and @enum_previous() allow enumerated values
mapping to a non-contiguous set of integers. The introspective capabilities into
structures are fairly limited, and only permit the enumeration of the field names
and number of fields. These attributes are provided as interesting examples, as it

is clear that the list can grow significantly.

Not all built-in attributes are related to types, for example, the @func attribute,
provides the same kind of information as C99’s __func__ identifier, in providing the
name of the current function. This piece of information is useful, for instance, to

keep track of the source of an exception:

terminate mklO_exception(@func());

As a result of the implementation of polymorphic calls, the CV inner machinery
maintains a runtime type descriptor, which contains such information as the size
and alignment of a particular type. It also contains values and functions that are
common to all types, such as a string representation (like that of of C++ type_info),

and an assignment function. This information is valuable in several situations.
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Prototype

Meaning

char *@func(void)

Name of current function

unsigned int Qenum size(enum _ type)

enumeration size

char *Qenum_ name(enum_ type elm)

string representation of
enum constant

enum_ type Qenum_previous(enum_ type elm)

previous value in enu-
meration

enum_type Q@enum_next(enum_type elm)

next value in enumera-
tion

enum_ type Q@enum_first(enum_ type)

Takes enum name or
value and returns first
constant in enum

enum type Q@enum last(enum type)

Takes enum name or
value and returns last
constant in enum

char **x @struct fieldnames(struct type)

name of fields in struct

unsigned int @struct_ numfields(struct_type)

Number of fields in struct

char * Otypename (type)

string representation of a
type

Table 5.1: Built-in attributes in CV
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Consider a programmer wishing to find out what type is instantiated by the system

for a particular polymorphic call:

forall( type T ) void polyfun( T t ) {
printf("Type T was instantiated in function %s as: %s", @func(), @typename(T));
}

A programmer can override the behaviour of a generated function by providing
their own implementation, as long as the interface is respected. This informa-
tion, combined with richer metaprogramming facilities, would allow programmers
to control or specify the automatic generation of code (a la macros or templates).
Although CV is currently nowhere near this stage, the attribute mechanism is a

step in the right direction.

5.4 Related Work

Current programming tasks require flexibility (e.g., localization) and interaction
with external data and computational sources. These requirements suggest that it
would be beneficial for the programmer to have a single form to provide all auxiliary
information on program elements [138]. This information can then be used by
development tools, development tools, deployment tools (e.g., stub generators), or
run-time libraries. Already incorporated in C# in the form of attributes, metadata
facilities have been proposed for the upcoming version of the Java programming
language [17], and furnish Java with a means of associating arbitrary attribute

information with particular classes/interfaces/methods/fields.

The integration of annotations with the C programming language has not been
widely explored. The intensional programming language Intensional C icc [74]
allows the annotation of identifiers (functions and variables) with versioning spec-
ifications, and includes algorithms to best match versions of software components.

This information is accessible at runtime via a new keyword, “vswitch”.

The automatic generation of functions that access complicated data objects
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has been studied by Sheard [115] in the case of recursive types, and by Grossman
[62] and Chuang et al.[29]. Closer to the approach presented here is the work by
Willink et al. [137], which relies on a deeply embedded object-oriented preprocessor
in C++, enriched with meta-functions and meta-variables.

libpdel [2] is a library that allows a user to describe a C type in a homogeneous
structure, and then works on this structure to provide marshalling into XML-RPC
and other protocols. It also allows for introspection of field names. The Gnome
GObject [128], in addition to these features, develops a complete dynamic-type
system for C.
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Chapter 6
C language compatibility

One of the CV programming language design objectives is to be backwards com-
patible with C, as the latter is defined in its Standard [6]. This goal was met to
a large extent, but due to the new constructs introduced in CV, and a desire to
fix problems in C, a small number of incompatibilities exist. Among these, the
most obvious are the new keywords and the modification to the behaviour of the
multibranch selection-statement switch (section 3.2). Because of these changes,
CV marks as invalid some legal C programs. This chapter is a first approximation
to estimate the number of C programs that might be in this situation. To this end,
a large body of code is searched for instances of the prognosticated incompatibili-
ties. The machinery set in place to carry out this task also allows, as a side benefit,

an estimation of the usefulness of certain CV extensions.

6.1 Experimental setup

This chapter describes an experiment consisting of scanning a corpus of valid C
code for code fragments that have been made invalid in CV, and code fragments
that could benefit from new features of CV. CV’s incompatibilities arise from the
introduction of new keywords and changes to control statements, in particular the
change to the behaviour of the switch statement (§3.2). The first language change

is unavoidable, and designers of every language that extends another must choose
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new keywords carefully, so as to cause the least disruption in existing code. The
hypothesis of the experiment is that CV keywords seldom conflict with existing C
variable names and other identifiers. As for the changes in the switch construct,
I maintain that changes in CV codify existing best practices, already respected by
programmers. Evindence to support these contentions is presented, giving credence
to the claim that few conflicts should occur in legacy code.

The patterns searched for in the corpus of C code are:

Identifier clashes If a C program includes among its identifiers (variables, func-

tions, formal parameters, etc.) uses of CV keywords, it is not valid CV.

Changes to the switch statement CV has disallowed statements in between
the switch and first case, which prevents usage such as Duff’s device. It
also modifies the behaviour of declarations in this position by guaranteeing
that initialization is performed. How limited the impact of these CV changes

is can be ascertained by observing the following properties of the corpus:

e The number of switches. The effects of changes to a language construct

are necessarily more localized if the construct is used sparingly.

e Whether switches are intertwined with other control structures. Any

code that exhibits this property would be disallowed in CV.

e Little or no code is placed between the switch and the first case. Any

code that exhibits this property could have its meaning changed in CV.

Fall-through case clauses The usefulness of certain CV extensions can be esti-
mated by how often a C pattern (idiom) is used that can be replaced by a

simpler CV mechanism. There are two main idioms for using fall-through.
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The first one is for cascading a series of options that overlap, e.g.:

switch ( argc ) {
case 3:

// open outfile file

// fall through to handle input file
case 2:

// open input file

break;
default:

// print usage message

The second is to concatenate cases in such a way as to make up for C’s lack
of lists and ranges as case guards. By examining the use of fall-through case
clauses, it is possible to determine when this idiom can be replaced by CV’s
case ranges or lists. This, of course, is just an initial approximation, as new
idioms and styles of programming may arise from having more complicated

case guards, and combining it with other facilities in the language.

Subsequent sections describe the corpus of code examined, how this population
is sampled, the tools and techniques by which the sample is analysed and, finally,
the results of the analysis. These results provide the evidence to conclude that the
modifications made in CV do not affect a large amount of existing C code. This
outcome suggests that the restrictions CV imposes are consistent with existing
coding conventions; as a result, programmers who observe these conventions will

not encounter the incompatibilities.

6.2 Corpus

The code that constitutes the corpus over which the search is conducted is ob-
tained from the “open source” movement. Many of these programs, freely available

in source form, are intended to be production-quality, to be used in day-to-day
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operations. Most of them have been written adhering to some coding standard and
have been subject to some minimal editorial review or peer examination, guaran-
teeing at least a minimal level of quality. Code compliant with this criteria and
still deemed illegal by a CV implementation cannot be dismissed as an example of
poor C coding practices, but as evidence against the assumptions that informed
the design of CV.

The GNU project is a prime example of open-source code. Also, its repository
is conveniently accessible and extensively mirrored. The code it hosts has no par-
ticular bias towards any application domain nor are particular restrictions placed
on program size. However, this software collection is enormous. In 2002, Wheeler
[136] estimated the size of a typical GNU/Linux system at over 30 million lines
of code, 71% of which are written in C. Clearly some sampling is needed to keep
these numbers within a manageable size for this experiment, and yet maintain a
significant cross-section of application domains and program size, i.e., it is desirable
for the study to include programs ranging from the size of the Unix word counter

wc to that of database management systems.

The GNU project organizes its software in packages, each of which comprises
code and documentation for a program or a related set of programs. The discussion
that follows refers to packages as the unit of distribution. Packages that include a
large number of executables are likelier to include a set of smaller complete programs
than packages of similar size that include only one executable. It is reasonable to
assume that complete programs are described in fewer source files, i.e., that shorter
programs are contained in these packages than, say, emacs, a package containing
thousands of source files that result in approximately ten executables. The infor-
mation on the executable density of a package can also be obtained from the GNU

directory.

The experimental sample comprises various application domains, ranging over
such areas as language processing, communications, system tools, statistics, plot-
ting, etc. Packages whose content is deemed too similar have been dropped from the
examined set. An example of this are the marst Algol-to-C and the cim Simula-to-C

translators, only the latter of which was included in the examined set.

Further criteria have been considered for the sampling process. In particular,
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Package Version LOC | Description

Termutils | 2.0 2812 | Programs for controlling terminals

Wget 1.9 20688 | A network utility to retrieve files from the Web
Gsl 14 146420 | A collection of routines for numerical computing
Emacs 21.3 211129 | The extensible display editor

Cim 3.30 22346 | A compiler for the Simula language

Bison 1.875 19168 | Parser generator (yacc replacement)

Patch 2.5.4 7147 | Apply a diff file to an original source

Plotutils | 2.4.1 71743 | Utilities for plotting scientific data

Sed 4.0.9 18015 | Stream Editor

Textutils | 2.1 34662 | Text utilities

Uucp 1.07 48341 | File copying program

Total 602471

Table 6.1: Selected packages

the popularity of a package has been used as a measure for tiebreaking. Popularity
is a measure that reflects the use of a package in terms of the number of times
it has been downloaded and the frequency of maintenance releases (it does not
discriminate, however, between feature addition and error correction). Although
not wholly reflective of the quality or even usage of the code (some widely used
programs are famous for the irregularity of new releases), popularity is a good
measure of how closely a package is examined and tested, and as such, became the
deciding factor in the case of conflict between similar packages. For example, in the
case of cim against marst described above, the more popular cim made it into the
sample. Popularity information is maintained in the GNU repository itself (in the
form of number of downloads) or, more systematically, by independent open-source

projects directories, such as freshmeat [1].

The GNU Project lists 248 package in its directory [54]. 151 could be obtained
automatically. Of these, 11 packages, comprising over 500,000 lines of code were
selected. Lines of code (LOC) counts were obtained with the c_ count [46] statistics
gatherer, which parses C code and discards lines containing only comments in its

results. The selected packages and their sizes are shown in table 6.1.

115



6.3 Code Analysis Infrastructure

For day-to-day programming, high-level code examination is often performed via
generic text-searching tools, such as the well-known grep. However, the code pat-
terns required by this analysis are considerably more complicated, and therefore

more elaborate means are called for.

Tools for the analysis of source code, other than language translators, include tag
generators, lines-of-code counters and a variety of others. In particular, tools to aid
program understanding and reverse engineering are particularly well known. Cox’s
comparative survey [36] provides a comprehensive overview. The most noticeable
difference between these tools is the representation they use for the analysed code.
These representations range from relational databases (as in the case with AT&T
Research Labs’ ciao [83]) to structured text forms (like the XML specializations
GXL [68], or CPPML). Cox adopted yet another approach in his Jupiter/Mercury
system [35], which relies on the MultiText text-retrieval engine. MultiText provides
efficient access to the gathered information, regardless of the size of the stored
corpus, whereas Mercury supplies an expressive query language. The combination
allows for fast and convenient searching of rich patterns in potentially vast quantities

of code.

The particulars of the internal document representation, retrieval model and
query language of MultiText are explained by Clarke, et al. [30]. It is enough
for the purposes of the current discussion to say that MultiText tokenizes and
annotates the document, and then indexes this extended stream of tokens. An-
notations consist of tags that provide some information as to the semantic role of
each token in the document. Jupiter relies on a compiler front-end (the combination

lexer/parser/symbol table) to provide these tags.

In its original version, Jupiter includes a parser, agc, based on the Roskind
grammar [110], which does not handle C99 or gcc-extensions. Since a good amount
of the examined GNU code makes use of these features, the system could not be
used “out-of-the-box”. The modular architecture of Jupiter allows for the parser
to be replaced by a more suitable one. Clearly, adapting the CV translator parser

to perform this function would not be an independent measuring apparatus. A
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workable alternative is ckit, a C compiler front end from Bell Labs. Extensively
tested and able to handle C99 and some gcc extensions, ckit has an extensible
architecture that makes it possible to write plug-in modules, such as the code

annotator for Jupiter, with relative ease’.

The new annotator has a slightly richer set of tags than the original Mercury
(it reintroduces several tags of the earlier Mars [37] system). In particular, besides
decorating the source code, the new annotator keeps file and package information.
This metainformation becomes relevant when discriminating certain aspects of the

code, e.g., multiple inclusions of the same file.

Building a repository from a great number of sources is a tedious and error-prone
task, so the highest degree of automation is desirable. First, a wrapper around the
annotator was created that can be used as a plug-in replacement for the C compiler.

This wrapper allows the reuse of the package-provided Makefiles.

Once the source code repository is built, the information extraction is done via
the last component of the system, the Mercury interpreter. Mercury is a modified
Scheme interpreter that subsumes the MultiText query language GCL. Queries
expressed in GCL include “literal”, e.g., the number of occurrences of a string
within a file, as well as “structural” expressions, e.g., the number of uses of an

identifier, as opposed to its declaration.

The process of building and using the repository is illustrated in figure 6.1. Af-
ter packages have been obtained and configured (which is the only operation in
the system that requires significant manual intervention?), they are built. Via the
wrapped annotation generator, the build process transparently populates the Multi-
Text backend database. This database stores the stream of tokens, and annotations

and meta-annotations that are obtained from each source file after preprocessing.

IThere is a very similar project, called cil. The ostensible difference with ckit is that cil
is implemented in the competing dialect OCaml. The reasons ckit was chosen over cil for
conducting the experiments described in this chapter are more circumstancial than technical.
However, ckit has been more extensively tested with large bodies of code, whereas I was unable
to determine whether the same was true for cil.

2Using the GNU Project for code samples presents the additional advantage that these programs
conform to a common configuration and building mechanism, which suggests that this part of the
process can be largely automated as well.
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Figure 6.1: Source code analysis system

In the figure, the dashed lines represent the progress of a stream of data into the
system. Once inside the repository, Mercury is used in batch mode to query the
database and gather statistics (the solid lines in the figure represent query-answer

dialogues).

6.3.1 Noise-introducing factors

A further problem in determining the exact number of compatibility errors is due
to the fact that two or more files might textually include the same problematic
C file. These errors include declaration of symbols that clash with new keywords.
Errors of this kind would be reported as many times as a file is included. The
metainformation included in the repository allows for a query to specify that each

file is to be considered only once, thus eliminating this situation.

Automatically generated C programs can also slant results, as generators use
the same form of output. Errors within these files are due more to the generator
than to the use of C, so packages that involve the use of these kind of files should be
handled especially. For the packages in table 6.1, the only code generators involved
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are flex and bison, whose output posed no particular problems.

6.4 Search patterns

With the infrastructure described above, the C code sample can be analysed with
respect to the changes in CV. As outlined in the introduction, there are two changes
in CV that seem the most likely to cause incompatibility problems. The first is the
the introduction of keywords that may be used as identifiers in valid C. The second
are the modifications to the syntax of the switch statement, which in C may include
any number of declarations and executable statements between the keyword switch
and the first case, whereas CV only allows for the inclusion of declarations in this
position. Also, C allows a switch to be interwoven with other control statements,
a behaviour that CV disallows syntactically. Finally, understanding fall-through
case clauses is interesting with respect to CV extensions. Uses of these constructs

are searched for, to estimate their frequency in actual code.

Identifier clashes All the declarations of variables and functions are col-
lected, and then an intersection of them with the 12 new CV keywords
(choose, context, dtype, fallthru, finally, forall, ftype, lvalue, resume,
terminate, try and type) is performed.

Switch frequency One pattern looks for all switch statements to determine how

frequently they occur.

Unreachable code in switches statements between a switch and the first case

(or default), either executable or declarations, are checked for.

Intertwined control statements Loop statements that are not completely con-

tained within a case block are searched for.

Uses of falling-through cases cases that do not include a break or return be-
fore the next case in the switch are considered an instance of falling through

cases.
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Fall-through to simulate lists or ranges A case followed by another case with-

out intervening statements are considered as an instance of case lists.

6.5 Results

Results are reported per package, because a package provides a better sense of how
constructs are used in complete programs, rather than functions or files. Queries
for the foreseen problematic patterns were submitted to the repository, with the

following results:

Identifier clashes: In the 11 examined packages only the keywords type and
context appeared as identifiers. The clashing identifiers are shown in the
second column of table 6.2. For each clash, the first number denotes the
number of declarations of the clashing identifier and the second number de-

notes the total number of identifiers declared in the package.

Switch frequency: switch frequency (compared against the total number of state-
ments) is shown in the third column of table 6.2. The usage of switch state-

ments is even lower than I had expected.

Unreachable code in switches: There was not a single occurrence of declara-
tions or executable code after a switch but before the first corresponding

case.

Intertwined control structures: In the code examined, there was not a single
occurrence of a switch intertwined with another control structure (i.e., Duff’s

device).

Uses of falling-through cases: Occurrences of fall-through cases are reported in
the fourth column of the table. The first number denotes the total number
of consecutive case clauses without intervening statements (case lists), and
the second number is the total number of occurrences of consecutive case
clauses with intervening statements. Note that a little over half of the uses of

fall-through cases are for case list/ranges.
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Package | Identifier clashes | switch Frequency(%) | Fall through cases
Termutils 1.10395 36/47
Weet type (2/66422) 0.52001 38/65
Gsl 0.01778 25/34
Emacs type(16/115353) 0.63812 201/456
Cim type (1/4262) 1.39616 58/129
Bison context (3/16992) 0.59113 198/211
Patch context (7/7948) 0.00608 30/58
Plotutils | type(22/5289) 0.70640 97/137
Sed 0.51948 23/35
Textutils | context (5/891) 0.64199 273/476
Tucp type(3/3527) 051194 155/186

Table 6.2: Results

It is clear from the results that the most problematic issue when compiling ANSI
C applications via the CV translator is the clashing of identifiers, in particular, the
identifier type. Since the use of type is central to CV’s parametric polymorphism
machinery, and the use of any other word would lead to confusion, CV’s designers
decided to include the type keyword in the language, at the expense of minor
adjustments in C legacy code. It is important to note that C++ introduced a
similar number of new keywords and large systems of legacy C code were adjusted
to work with it.

Next, the CV changes with respect to the switch statement do not present
problems because programmers, in general are not using the features that were
eliminated. It is my opinion that further examination of a larger sample complying
with a set of coding standards would only confirm the results presented here in
regards to declarations and code in between switches and their first case, or the
popularity of Duff’s device and its variants. Their absence in the examined sample

is indicative of their rarity in practical code.

Finally, the observed use of fall-through in switches suggests that the combina-
tion of CV’s choose and case lists and ranges cover half of the situations where this
problematic feature is necessary, with benefits to readability and maintainability.

Hence, these extensions appear to be warranted.
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6.6 Related work

Source code analysis is normally associated with program understanding and reverse-
engineering (for example, see [33]). However, there are some instances of empirical
analysis of source-code corpora as a means to settle language design discussions,
e.g., Wright’s [139] study of ML source code resolved the dispute in regards to the
introduction of the value restriction rule in the language. Particularly relevant to
the study described in this chapter is Ernst et al. [52], which examined C preproces-
sor usage to determine the importance of preprocessor-aware tools for source-code

analysis.

The existence of a large variety of dialects of the C language have motivated
compatibility studies. The analysis of the compatibility between C and C++ has
drawn, understandably, particular interest. Most of this studies, however, use a
high-level approach, e.g. Stroustroup [124, 125] or Tribble [133]. To my knowledge,
analysis of a large source-code base to measure compatibility with an extended

language has not been done for C.

122



Chapter 7
Conclusions

William Bragg said that the important thing in Science is not so much to obtain
new facts as to discover new ways of thinking about them. In a similar vein, much
of this thesis is about selectively choosing a number of existing language ideas and
blending (engineering) them together to produce a set of consistent, orthogonal and
expressive extensions to C. Unfortunately, it is difficult to quantitatively measure
the success of this work because all useful programming languages are Turing-
complete and all Turing-complete programming languages are equivalent in some
broad sense. Nevertheless, there are differences among programming languages be-
cause programmers often chose a languages to fit an application problem, implying
one language has at least subjective advantages over another in certain specific
situations. Given that many of the differences among programming languages are
subjective, are there some general observations that can be made about what is

good or bad?

There is strong evidence that supports the claim that the variety of problems
computers are used to solve, and of programmers writing solutions for them, escape
the scope of any single programming language. Different languages rely and imple-
ment a different “cluster of programming notions” [43]. Trying to make this cluster
as large as possible for a particular language results in “kitchen sink” languages
like PL/T and Ada, which are extremely powerful but have not enjoyed widespread

acceptance.
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An alternative to the “kitchen sink” approach for language design is to provide
a set of powerful mechanisms and let programmers build libraries to generalize
the language into multiple application domains. What is crucial in this approach
is that the mechanism for extension must meld with the builtin language features
and with the extensions generated by programmers, resulting in a seamless language
system. C++ made an excellent attempt at this approach, integrating builtin and
user-defined types within a complex, extensible type-system supporting inheritance,

overloading and generics.

However, another component of C++4's success is its extension from the simple
programming model of C, a language already popular, in consistent and unsur-
prising ways to make use of well-chosen abstractions. This school of design is the
“evolutionary” approach, and it involves a more constrained design space than its
“revolutionary” counterpart (like Java). Whereas the latter approach requires a
clear notion of the new language and its abstraction, the former also presupposes
a thorough understanding of the substrate language, both in design and how it
is used. Careful syntactic extensions and a firm grasp of the interactions of the
added abstractions are necessary to make the extensions fit with existing notions.
Interestingly, the current growth of C++ reflects its adoption by more ambitious
programming projects, and these projects are correspondingly using more of the

advanced languages features (especially the generic Standard Template Library).

CV mimics the approach taken by C++ but adopts a different set of abstractions
mechanisms to achieve its goals. First, CV attempts to remain backwards compat-
ible with the large corpus of legacy C code (as did C++). Second, CV attempts
to fix some of the more obvious flaws in C in an attempt to make the language
accessible to a broader range of programmers, even beginning programmers (unlike
C++). Third, CV introduces a number of new language abstractions and mecha-
nisms that I believe significantly extend the power of the language and simplify the

programming task.

CV, as presented initially by Ditchfield [47], introduced to C a type system that
provides for advanced overloading and polymorphic functions, while preserving the
semantics of the existing type system. CV programmers can specify the behaviour

of functions without extensionally refering to types but by intensionally describing
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types in terms of the operations the function uses. Bilson’s implementation of this
type system [16] introduces extensions (MVR functions) and artifacts that serve as

starting points for the features described in this thesis.

In this thesis, both corrective and proactive changes have been made to C. In
changing the switch statement I have revisited an existing control structure to
prevent some egretious mistakes and misuses. In adding new syntax for decla-
rations, new loop control statements and the choose statement, I have provided
more structured and less error-prone mechanisms that can co-exist with their tra-
ditional counterparts for the sake of legacy code. In adding tuples, exceptions and
attributes, I have enabled new ways of writing programs that can reduce the effort
involved and increase robustness. Finally, I have demonstrated that these changes

have minimal impact on existing C programs.

The litmus test of the effectiveness of a programming language is usage. Cur-
rently there is only a very small amount of CV code, in the form of test pro-
grams used to ascertain the correctness of specific mechanisms. There are no
medium/large programs to demonstrate the applicability of these mechanisms to
specific programming tasks. Nevertheless, languages with similar facilities, like
Java, C++ and ML, have shown that similar features are useful and usable, but
only time and use will tell the true effectiveness of these features, as well as the

tasks they are most adequate for.

7.1 Future Work

Although CV goes a long way toward fixing the most insidious shortcomings of C,
there are still areas that need addressing. First, the built-in support for arrays in C
is error-prone and difficult for beginners to understand, but is so deeply ingrained
in the language that it is impossible to change in any significant way. A better
ad hoc array mechanism is feasible, but I feel a more general solution, generic
types, is preferable. Such an addition to the CV type system would permit the
encapsulation of adequate array handling facilities in a library, as well as provide
support for generic container libraries. To this end, some initial design work has

been done on generic types for CV, but it is still far from completion.
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Two other glaring defects in C are currently unaddressed by CV: concurrency
mechanisms, and advanced support for modularity. Concurrency opens the door for
a new way of thinking about programming and structuring programs. Modularity
facilitates the development of large systems. Of the two, the one that requires
the greatest design effort is, without a doubt, concurrency, given the diversity of
concurrency mechanisms and approaches. Both concurrency and modularity are
crucial for modern programming tasks, and increase the possibilities of success for

a language.

Also crucial for the success of a language is the availability of development
tools. Features like attributes, that allow for additional communication between
the program and language processing systems, allow for powerful tools. Traditional
support tools like debuggers and profilers are likely to be similar to those in ex-
istence, but the sophisticated type system incorporated in CV will likely require
a constructive tool that furnishes programmers with information about the over-
loading resolution and type specialization process. To this end, I am developing
an explainer, in the spirit of the one described by Duggan [50], that presents the

process of type selection in a meaningful way.

Another area that remains unexplored in this work is the optimization that the
new forms in the language allow. The expressiveness gained in CV indicates that
there is more information available to an optimizer for generating more efficient
code. To exploit these hypothetical gains, however, would require the creation of
a true CV compiler, rather than the current translator approach. In addition, the
sound theoretical basis that the CV type system provides is likely to help verify the

correctness of code optimizations.

Finally, the CV type system is built upon an elegant formalism. Wanting equally
solid theoretical standing for the extensions presented in this thesis, I looked for
appropriate formalisms to cover tuples, exceptions and attributes. Interestingly, I
believe now that I have found a single formalism that covers all these features. The
intuitionistic modal logic S4, when mapped into a type system, encompasses the
static and dynamic aspects of all the extensions discussed in the text. Experimen-
tal languages like Template Haskell and MetaML, based on variants of this type

system are becoming increasingly important within the research community, and

126



are also starting to draw the attention of practitioners, since they provide a solid
foundation for persistence, distributed programming and other dynamic program-
ming tasks. If the CV type system is extended in this direction, not only would the
benefits of a more dynamic style of programming be reaped, but they would also be
attained without detriment to legacy code, or a steep learning curve. A language
traditionally considered low- to mid-level, that could traverse the whole spectrum
of computation and stand together with languages that enable the highest level
of abstraction, would be the ultimate argument for the evolutionary approach of

programming language design.
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Appendix A

Miscelaneous facilities

CV contains a number of minor features that ease the task of programming, or
facilitate the reading and maintenability of CV programs. These are extended

numeric literals and compound literals for the initialization of complex structures.

A.1 Numeric Literals

In the interest of ease of readability and inspired in a similar feature found in Ada,
underscores embedded within a numerical constant are allowed. As most cultures
have a similar construct, usually in the form of a comma or a period, this addition
makes reading and typing long constants easier. This form of literals is invalid in
C, so the addition is backwards compatible. All numeric literal forms in C99 are

allowed in CV. Examples:
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2_147_483_648 // decimal constant

56_ ul // decimal unsigned long constant

0_377 // octal constant

0_ x_ ff_ ff; // hexadecimal constant

Ox_ ef3d_aabc / * hexadecimal constant * /

3.141_ 592_654 / * floating point constant * /

10_e_+1_00 / * floating point constant * /

Ox_ ff.ff; // hezadecimal floating point

Ox_ L1.ffff_ ffff_ p_128_ | // hexadecimal floating point long constant

Sequence of underscores, or underscores at the beginning or end of a sequence of
digits are not permitted in numeric constants. Notice that _2, or _2_, for example,
are valid identifier names. A numeric prefix may end with an underscore; a numeric
infix may begin and/or end with an underscore; a numeric suffix may begin with
an underscore. For example, the octal 0 or hexadecimal Ox prefix may end with
an underscore: 0_377 or Ox_ff; the exponent infix E may start or end with an
underscore 1.0_E10, 1.0E_10 or 1.0_E_10. Type suffixes U, L, etc., may start with
an underscore: 1_U, 1_ll or 1.0E10_f.

A.2 Initializers

The C language did not use to have denotations for most aggregates (unions, arrays
and structures), a situation that drove programmers to assign values to their mem-
bers in a one-by-one fashion, a practice that is tedious, error-prone and that can
obscure the intent of the program, by interleaving initialization code with the rest of
the algorithm. These concerns become specially important when sparse aggregates
are used in a program, which is often the case, but they do with high frequency in

several problem domains, for example, numerical analysis.

In view of this situation, the C99 committee decided to incorporate some form
of compound literals in the data initialization sublanguage, probably inspired by

the of a designated initializers extension included in the gcc compiler. Although
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these additions can be perceived as mere syntactic sugar, compound denotations
can expedite compilation and even run-time efficiency, since (with a proper imple-
mentation) aggregate assignments can be done with little or no analysis, whereas
the alternative element-wise assignment, almost certainly done with nested loops,

can only be optimized by some non-trivial data-flow analysis [90].

C89 initializers consist of lists of scalar literals or compile-time constant expres-
sions (another C99 extension allows these expressions to be non-constant). The
idea behind these lists is to represent visually the approximate layout of the object
in memory. In C99, each element of the initializer list can be optionally designated,
that is, identified by either a name or a number. This identifier must correspond
to the names of one of the aggregate members of the aggregate being initialized,
or, in the case of arrays, a number (a single number, since no “slicing” is allowed)

within its boundaries.

Designated and non-designated initializers can be freely intermixed. The exact
result of each initializer specification depends on the kind of entity being initialized.
In the case of an struct, a positional initializer following a designated one will
correspond to the position immediately after that of the designated initializer. CV
allows for designated initializers, and extends the designator facility to include tuple

designations.
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