
C8, a Study in Evolutionary Design in

Programming Languages

by

Rodolfo Gabriel Esteves Jaramillo

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Mathemati
s

in

Computer S
ien
e

Waterloo, Ontario, Canada, 2004

 Rodolfo Gabriel Esteves Jaramillo 2004

I hereby de
lare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions

or individuals for the purpose of s
holarly resear
h.

I further authorize the University of Waterloo to reprodu
e this thesis by pho-

to
opying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of s
holarly resear
h.

ii

The University of Waterloo requires the signatures of all persons using or pho-

to
opying this thesis. Please sign below, and give address and date.

iii

Abstra
t

New programming languages appear
onstantly. Many of them are based on ex-

isting ones but di�er suÆ
iently so they are in
ompatible (e.g., C/C++ and Java).

Building on the C8 language (Dit
h�eld [47℄ and Bilson [16℄), this thesis
ontinues

the C8 \evolutionary" approa
h to programming language design based upon the

very su

essful C programming language, preserving its syntax and semanti
s while

extending it with features that
onsiderably enhan
e its expressiveness. The evo-

lutionary approa
h allows for the introdu
tion of powerful abstra
tion me
hanisms

with minimal disruption to lega
y
ode, truly \making the future safe for the past"

[20℄.

The new features added to C8 �x existing problems in C and add features that

onsiderably ease the
onstru
tion and maintenan
e of C programs. C's de
lara-

tions and swit
h statement are modi�ed to �x well-known problems. New features

in the form of tuples, ex
eptions and attributes are added to enhan
e program-

ming and in
rease robustness. Possible sour
es of in
ompatibility are identi�ed

and empiri
ally studied.

iv

A
knowledgments

I am mu
h indebted to my supervisor, Dr. Peter A. Buhr for his support,

patien
e, and enthusiasm. Not only did he suggested an interesting thesis topi
, but

he is a
onstant sour
e of inspiration in his
ommitment to tea
h and in his
onstant

sear
h for knowledge. I am also very grateful to Ri
hard C. Bilson, whose
lear

thinking often pointed out my mistakes in
on
eption, and whose
ommand of both

natural and programming languages frequently solved my problems of expression.

I owe Glen Dit
h�eld many thanks, for his initial design of C8, whi
h resulted in

a beautiful
ore language. Thanks also go to my readers, Dr. Charles Clarke and

Dr. Gordon Corma
k, whose suggestions make this a better work.

Waterloo and the Programming Language Group Lab are great pla
es to work

at, and I am very happy to have had the opportunity to do so. Many thanks go to

the members of this group, espe
ially Egidio, David, Jiongxiong, Ashif and Tom.

They forever remind me of the pleasure there is in sear
hing for answers, espe
ially

when it implies �nding more questions. For a limitless supply of happiness, and a

similarly well sto
ked sour
e of aggravation, I would like to thank Zheng, Kim and

Will. God bless you, guys.

Part of this work was funded by the mexi
an National Coun
il of S
ien
e of

Te
hnology (Consejo Na
ional de Cien
ia y Te
nolog��a), whom I gratefully a
-

knowledge.

v

Dedi
ation

To my parents.

vi

Contents

1 Introdu
tion 1

1.1 C programming language . 3

1.2 C language evolution . 6

1.2.1 Su

ess of C . 8

1.2.2 C and C++ . 11

1.3 C's short
omings . 11

1.4 C8 proje
t . 14

1.4.1 Related work . 18

1.5 C8 translator . 19

1.5.1 Bla
k box view . 19

1.5.2 Fun
tional des
ription . 19

2 De
laration Syntax 21

2.1 C De
laration Syntax . 23

2.2 C8 De
larations . 27

2.3 Related work . 30

vii

3 Control Stru
tures 31

3.1 Multi-level exits . 31

3.2 Sele
tion statements . 35

3.2.1 Case labels . 38

3.2.2
hoose statement . 42

3.3 Ex
eption handling . 43

3.3.1 EHM design spa
e . 46

3.3.2 C8 Ex
eption Handling Model 53

3.3.3 Implementation . 56

3.4 Related work . 60

4 Tuples 63

4.1 Multi-valued Fun
tions . 64

4.1.1 Importan
e of MVR fun
tions 71

4.2 C8 Tuples . 73

4.2.1 Tuple Assignment . 75

4.2.2 Multiple Assignment . 75

4.2.3 MVR fun
tions in C8 . 77

4.2.4 Named parameters . 79

4.2.5 Re
ords and Tuples . 84

4.3 Implementation . 85

4.3.1 Tuple expression analysis . 85

4.3.2 Tuple
ode generation . 86

4.4 Related work . 92

viii

5 Attributes 95

5.1 Re
e
tion . 98

5.2 Introspe
tion . 100

5.3 C8 attributes . 103

5.3.1 Idioms and
onventions . 104

5.3.2 Attribute me
hanism . 105

5.4 Related Work . 109

6 C language
ompatibility 111

6.1 Experimental setup . 111

6.2 Corpus . 113

6.3 Code Analysis Infrastru
ture . 116

6.3.1 Noise-introdu
ing fa
tors . 118

6.4 Sear
h patterns . 119

6.5 Results . 120

6.6 Related work . 122

7 Con
lusions 123

7.1 Future Work . 125

A Mis
elaneous fa
ilities 143

A.1 Numeri
 Literals . 143

A.2 Initializers . 144

ix

List of Figures

1.1 The evolution of C and its major in
uen
es 9

1.2 Notable in
uen
es on C8 . 15

3.1 Multilevel exit in Bliss . 32

3.2 Multilevel break . 33

3.3 Multilevel exit in C8(left) and C translation (right) 34

3.4 Du�'s devi
e . 38

3.5 De
laration hoisting in sele
tion statements 39

3.6 Use of ranges and its translation. 41

3.7 Translation of the
hoose statement. 43

3.8 Ex
eption handling . 51

3.9 Ex
eption handling translation. 59

4.1 Name driven mat
hing . 83

4.2 Code generation for a multiple assignment statement 88

4.3 Code generation for \swap" statement 88

4.4 Generated
ode for a mass assignment statement 89

4.5 Generated
ode for a mass assignment statement 89

5.1 Example of C++ trait
lasses . 102

xi

5.2 C8 attributes grammar . 106

6.1 Sour
e
ode analysis system . 118

xii

List of Tables

3.1 Control Stru
ture Taxonomy . 49

5.1 Built-in attributes in C8 . 108

6.1 Sele
ted pa
kages . 115

6.2 Results . 121

xiii

Chapter 1

Introdu
tion

In 1962, the historian and philosopher of s
ien
e, T.S. Kuhn
laimed in his in
uen-

tial book The Stru
ture of S
ienti�
 Revolutions [84℄ that a
quisition of s
ienti�

knowledge does not pro
eed by a

retion but rather by revolution: one theory

super
eding its forerunner by dramati
ally
hanging the latter's model of reality.

It would seem that a similar situation o

urs to the theory of programming,

where new tools and te
hniques super
ede and render the old obsolete. Every year

a wealth of new, mutually in
ompatible programming languages make their ap-

pearen
e, ea
h with its own notion of what
omputation is (on the theoreti
al side),

how parti
ular hardware resour
es should be presented to the end programmer (on

the pra
ti
al side), and what abstra
tions need be provided to model problems (on

the appli
ation side). In other words, ea
h programming language interprets the

task of programming in di�erent, in
ompatible ways. Like Kuhn's theories, every

new programming language presents a di�erent view of reality.

However, when it
omes to the
raft of programming, pra
titioners are mu
h

more resistant to adopting new tools. This phenomenon is illustrated by the fa
t

that, among programming languages, the oldest ones are still alive and thriving.

When, for whatever reasons, a new language does make its way into the program-

mers' set of tools, old ideas may need to be expressed in (potentially radi
ally)

di�erent notation, if not altogether di�erent notions than before, and require re-

learning. Moreover, whatever
orpus of
ode is written in prior languages is ren-

1

dered useless.

This
ontradi
tion between the status quo of existing programming languages

and the
omplete
hange asso
iated with new languages is largely unne
essary, sin
e

most languages di�er from one another in relatively small ways. Languages evolve

from others languages either by extension, adding features the original la
ks or pro-

vides in in
onvenient ways (e.g., original C++ and its C substrate); by abstra
tion,

when one or several features of the language are found to be instan
es of an ab-

stra
tion me
hanism (e.g., the namespa
e system in C++ is abstra
ted by pa
kages

in Java and assemblies in C#); by dul
i�
ation, when a
ommonly used
onstru
t

in a language is given espe
ial syntax (e.g., a sele
t statement in C subsumes a

hain of if -then-else
hain in Algol 60); by preemption, when a feature previously

left to the programmer's dis
retion be
omes �xed in the language (e.g., di�erent

approa
hes in memory management of C++ and Java); or by subtra
tion, removing

problemati
 or dangerous features in the original language (e.g., stati
 versus dy-

nami
 binding in S
heme from {early{ Lisp, or Java removing multiple inheritan
e

from C++). Not all these forms of modi�
ation (in fa
t, only the last two) imply

the in
ompatibility of the resulting language with its an
estor. Unfortunately, none

implies
ompatibility.

It is my impression that the art of programming language design lies not so

mu
h in providing new language
onstru
ts and me
hanisms, but in integrating

desired features in su
h a way that they present a
onvenient notation and
onsistent

model of
omputation to the end programmer, while allowing for a reasonably fast

translation into eÆ
ient ma
hine
ode. This thesis des
ribes the
urrent stage of

a proje
t fo
using on language evolution in all the forms des
ribed above (ex
ept

preemption), that uses the C programming language as a departure point.

The remainder of the
hapter explains the motivation behind C as the substrate

and other proje
ts that have undertaken a similar goal. It also gives an overview

of the C8 proje
t and its obje
tives. Finally, it presents the C8 language transla-

tor ar
hite
ture, that serves as a testbed for the implementation of the extensions

des
ribed in later
hapters. These extensions in
lude an alternative de
laration

syntax for C obje
ts (
hapter 2), modi�
ations to C's
ontrol stru
tures (
hapter

3) and tuples as a data stru
turing me
hanism, the impli
ations of having su
h a

2

me
hanism weaved into the polymorphi
 fabri
 of the language and notational ben-

e�ts (
hapter 4). Chapter 5 des
ribes a me
hanism for
ode annotations that allow

the programmer limited a

ess to the stru
tures and information the translation

system has generated about the program. In
hapter 6, a sour
e
ode analysis sys-

tem is des
ribed and used to gather eviden
e as to the relevan
e of the extensions

presented in previous
hapters, and estimate the impa
t of the remaining in
om-

patibilities between C and C8 on existing
ode. Finally,
hapter 7 presents the

on
lusions derived from this work and the identi�ed areas of further study. The

appendi
es des
ribe a number of minor additional fa
ilities in the language (e.g.,

extended numeri
al literals and
omposite literals for initialization). Examples of

C8 usage and a summary of in
ompatibilities with C are also appended.

A remark about the typesetting style used in the thesis. A large number of lan-

guages are mentioned in this work for
onstrasting purposes. The names of some

of these languages have no standard spelling, so this work adopts the
onvention

of spelling their names in all
apitals if pronoun
ed by enumerating their letters

(APL, SQL, et
.), and mixed
ase otherwise (Fortran, Algol, Cobol). Their de�n-

ing do
ument
ited in the bibliography as their standard, the user manual of the

referen
e implementation, or, failing those, the paper in whi
h the language was

�rst presented. Also, some e�ort has been made to typeset the
ode in these lan-

guages a

ording to the usual pra
ti
es in indentation and prettyprinting as applies

to the parti
ular language. This might be at times
onfusing (for example when a

token marked as a keyword in one appears as a normal identi�er in another), but

I thought it preferable to the alternative of a single, uniform, typesetting style.

1.1 C programming language

The C programming language is enormously popular and in
uential. It has, how-

ever a number of troublespots despite several rounds of language revision and stan-

dardization. This thesis des
ribes the way a new programming language, C8, ad-

dresses and
orre
ts some of the most insidious of these troublespots, while main-

taining almost
omplete ba
kwards
ompatibility. This
hapter presents some of

C's unfortunate design
hoi
es and omissions presented in the
ontext of the C

3

programming language evolution. As well, an overview is given for some of the C8

solutions to these problems.

\Why extend C?" is, oddly enough, a question that is asked both by the C

programming language detra
tors and advo
ates alike. For the former, C's rule has

run its
ourse: the in
remental re�nement pro
ess of the language has gone as far

as it
an and the burden of ba
kward
ompatibility is too grievous to
arry. It is

more produ
tive to start from a
lean slate, in
orporating the lessons learned in

the 30-plus years C has been in use. After all, surely the programming proje
ts

now being undertaken are di�erent enough from those programmers had to deal

with 30 years ago to warrant a new language. For the latter, C is good as it is,

autiously evolving via the usage-di
tated
hanges introdu
ed by the standardiza-

tion
ommittee. More radi
al
hanges run the risk of not only failing to
ure C's

maladies but of introdu
ing new ones in the pro
ess. This risk is eviden
ed by

the fa
t that, for every su

essful spino� of C, like C++,
ountless other diale
ts

have been forgotten. Paraphrasing a quip by C.A.R. Hoare, \C is not only a great

improvement over its prede
essors, but over most of its su

essors as well" [66℄.

However, C remains a proven, reliable, pre
isely de�ned workhorse, still remark-

ably healthy and used by many more programmers than C++ or Java. Furthermore,

the use of C
ontinues to grow, espe
ially in internationalization proje
ts. One look

at the expanding Open Sour
e
ommunity provides ample eviden
e

1

; for example,

lose to 30% of the proje
ts listed in freshmeat.
om use C as their development

language, as opposed to the 13% that use C++, 13% that use Java, or 25% that use

some an s
ripting language (Perl, Python, Ruby and T
l
ombined)

2

. Besides, C is

the target language of
hoi
e for a number of tools, ranging from parser generators

to programming language translators. C has been des
ribed as a \universal inter-

mediate representation" [4℄, or less
haritably, a \ma
hine-independent assembly

language". C's popularity has made it a frequent means for transmitting knowledge

to programmers of every level of expertise. It is
ommon for a programmer these

1

It has been
ommented that the Open Sour
e
ommunity's marked preferen
e for C is, up to a

point, a result of the la
k of an available C++
ompiler. However, this de�
ien
y is being re
ti�ed

with the release of g

 3.x.

2

Sample taken at the end of Mar
h 2004. The remainder of the proje
ts hosted by freshmeat are

written in other languages.

4

days to have C as their �rst (and sometimes only) programming language.

It is in this
ontext that voi
es of protest start mixing with those singing the

praises of C. Its unsuitability as a �rst language, and as a vehi
le for tea
hing basi

programming
on
epts is
onsistently pointed out and has been extensively studied

[92℄. This does not mean that beginners are the only vi
tims to the language's

idiosyn
rasies; not at all, some of its features and idioms still bite the most sea-

soned of programmers from time to time [82, 101℄. As well, C is often des
ribed

as de�
ient when it
omes to modern language features. The abstra
tion me
ha-

nisms

1

present in C are very simple (and
omparatively not very far from the ones

provided by the original Fortran): variables, fun
tions, and prepro
essor ma
ros.

The omission of more advan
ed abstra
tion me
hanisms make language support

for modern programming pra
ti
es minimal while making user-de�ned language

extensions hard to write and harder to maintain. This in a world where language

extensibility by the user is in
reasingly high in importan
e among most program-

ming language developers [119℄. Furthermore, programming
on
epts unfamiliar in

the 70s have been explored and have been proven to enhan
e desirable properties

of software, like reliability, maintainability or se
urity.

When a language has stayed in the mainstream as long as C, it is natural to

expe
t a number of attempts to engineer new features while preserving working
ode

and leveraging user expertise. A long string of su

essors (not as long as Pas
al's,

but long enough) and a protra
ted standardization pro
ess

2

attest to this. None of

these proje
ts has a

omplished these goals, but people keep trying and with good

reason. Ri
hard Gabriel [57℄ lists \being similar to existing languages" as one of

the
hara
teristi
s that a programming language should have to in
rease its
han
es

of su

ess. Given C's popularity, it is not surprising that so many designers have

used it as a (at least synta
ti
) basis for their own
reations (e.g., C# and Java).

1

An abstra
tion or de�nitional me
hanism is the set of fa
ilities a programming language provides

to give a name to a parti
ular entity (e.g., address of storage, address of an instru
tion, family of

fun
tions, des
riptions of types) for later reuse.

2

While the goals of the standards
ommittee in
lude �xing the language as one of its many ob-

je
tives, �rst and foremost, their e�ort has been to stri
tly de�ne and then
odify best pra
ti
es,

preserving as mu
h working lega
y
ode as possible. Taking this into a

ount, it is understandable

that �xing the language did not rank high in their list of priorities.

5

If the new language in question is not only \similar" but
ompatible, meaning that

all, or a signi�
ant portion of the programs written in the base language are valid

and
orre
t, the
han
es of su

ess are
on
eivably higher. To properly understand

how to �x C, it is ne
essary to des
ribe the C language and its design philosophy,

inasmu
h as both drive its latest in
arnation, the ANSI C99 standard.

In the following se
tion, a short history of C is provided, in the interests of un-

derstanding its evolution. Later se
tions of the
hapter des
ribe in some detail the

troublespots remaining in the language, and mention whi
h of these are addressed

by this work.

1.2 C language evolution

C is a dire
t des
endant of BCPL and, as su
h, heir to the tradition of pro
edural

languages in the style of Fortran and Algol 60 (�gure 1.1). This lineage is still

easily noti
ed: C is small and
ompa
tly des
ribed, assets well suited to its original

domain, system programming. Dennis Rit
hie blended these in
uen
es with his

own interpretations and additions into a design that, as he has pointed out, got

things \mostly right the �rst time" [108℄. This basi
 language is the
ore around

whi
h extensions have been built, and it has
ome to be known as the \spirit of C".

This term has generated mu
h heated debate when attempts are made to de�ne it

pre
isely; Stroustrup's version [125℄ pins it down a

urately enough:

1. Keep the built-in operations
lose to the ma
hine (and eÆ
ient).

2. Keep the built-in data types
lose to the ma
hine (and eÆ
ient).

3. No built-in operations on
omposite obje
ts.

4. Do not do in the language what
an be done in a library.

5. The standard library
an be written in the language itself.

6. Trust the programmer.

6

7. The
ompiler is simple.

8. The run-time support is very simple.

9. In prin
iple, the language is type safe, but not automati
ally
he
ked (there

was lint for that).

10. The language is not perfe
t be
ause pra
ti
al
on
erns are taken seriously.

This des
ribes the language that is des
ribed in [78℄. C a
quired more
onstru
ts

(stru
ture assignment {whi
h to some extent violates point 3 in the list above{,

enumerations and void), after an unsu

essful attempt by Ken Thompson to rewrite

Unix, whi
h is the often-told \trial by �re" of C as a language for programming-

in-the-large. This later version of the language is
alled by Stroustrup \Classi
 C"

[125℄. In a pro
ess
losely overseen by Rit
hie, the language was enri
hed with more

types (long and unsigned), Algol 60-style unions,
asts, and stru
ts
ame
lose

to be
oming �rst-
lass obje
ts (la
king only literals, whi
h would be later added

by the C99 standard), and areas of the language were re�ned, e.g., the relationship

between stru
ture pointers and the stru
tures they point to was strengthened.

C spread out in industry and edu
ation so qui
kly and su

essfully (thanks

in no small part to the availability of a portable
ompiler p

), that the need to

stri
tly de�ne it, was soon apparent. A
ommittee was formed and The ANSI C

standard (X3.159-1989) was rati�ed in De
ember 1989 (although te
hni
ally it was

ompleted a year earlier). Its
harter was aimed more at de�ning the language

with minimal impa
t to working
ode than to �x any troublespots. It did �x some

troublespots with the introdu
tion of fun
tion prototypes,
oat as a data type and

the
onst keyword, allowing a modi
um of independen
e from the prepro
essor. An

ISO C standard followed, but it was in e�e
t equivalent to that a

epted by ANSI.

In 1992 the ANSI standard was oÆ
ially withdrawn, as
ontrol of the C standard

passed from ANSI to ISO, so that now there is a single standard, managed by an

international body.

As per these standardization bodies' regulations, starting in 1995 the standard

went through a revision pro
ess, whi
h yielded the re
ent C99 standard. A major

driving for
e in this do
ument was the Numeri
al C Extensions Group, whose intent

7

was to make C a language more suited and appealing to the s
ienti�

omputation

ommunity (boolean and
omplex types were added, Fortran-style variable-length

arrays, more mathemati
al fun
tions and ma
ros)

Figure 1.1 shows a number of languages and their respe
tive in
uen
es, and more

importantly, the e�e
t they had on the development and evolution of C. As
an be

seen, C obtained mu
h of its design and many features from its an
estor language

CPL [15℄. What the diagram does not show exa
tly is that the later versions of

the language are stri
tly upward
ompatible, but la
k some ba
kward
ompatibility

[70℄. Also missing in the diagram is that the in
uen
e of Algol and BCPL trans
ends

a mere parti
ular language design, but represents a s
hool of thought advo
ating

that the design of programming languages should be more in
uen
ed by the use

the programmers put it to than a parti
ular approa
h to programming thought

best by its designers. The C design pro
ess was never too deta
hed from this goal,

both in implementation and through its user
ommunity. (As opposed to Algol

60/68, where the languages were
ompletely designed, and standardized before an

implementation was even attempted.) This s
hool of programming language design

was
alled by Ri
hard Gabriel the \Worse is Better" approa
h [56℄, and it states

that software should start small and evolve a

ording to the needs of its users.

Software designed this way, says Gabriel, has a better
han
e of survival, if perhaps

with a diminished aestheti
 appeal. In fa
t, Dennis Rit
hie
redited this parti
ular

design (along with tool availability, right timing and lu
k) with the su

ess of the

language [106℄.

1.2.1 Su

ess of C

C in its various forms is an enormously su

essful language. Its portability, terse-

ness, minimal requirements on the run-time system, emphasis on performan
e and

impli
it trust in the programmer has made it a favorite among programmers, and

(until
omparatively re
ent times) the language of
hoi
e where large proje
ts were

on
erned. Testimonials of this su

ess are the large user-base, huge
orpus of
ode

and abundant literature that both fo
uses on the language or uses it as the medium

to introdu
e programming
on
epts.

8

Algol 60

Algol 68

C with Classes

C++

CPL

BCPL

B

C

Classi
 C

ANSI C

ISO C

C99

Obje
tive C

Cobol

PL/I

Figure 1.1: The evolution of C and its major in
uen
es

9

Timing was of
ourse an important fa
tor for the widespread a

eptan
e of the

language. The su

ess of Unix made C available to hundreds of thousands of people.

Conversely, Unix's use of C and its portability to a wide variety of ma
hines was

important in the system's su

ess. Fortunately, C and its
entral library support

has always remained in tou
h with the real environment, whi
h made its transition

to platforms other than Unix a relatively easy one. In the words of Rit
hie, \[C℄

was not designed in isolation to prove a point, or to serve as an example, but as a

tool to write programs that did useful things; it was always meant to intera
t with

a larger operating system, and was regarded as a tool to build larger tools" [108℄.

Regardless of the
hanges mentioned in the previous se
tion, C has remained

omparatively stable through a large user-base in a wide variety of environments

and with a diversity of
ompilers. This stability did not prevent a number of diale
ts

from appearing (of parti
ular importan
e to this do
ument is the one used by the

GNU Proje
t's C
ompiler, g

), su
h as the addition of the quali�ers far and near

for the Intel segmented ar
hite
ture.

In
ontrast to natural languages, the su

ess of a programming language is not

measured only by the size of its user-base or amount of
ode written in it, but

along other dimensions: su
h as expressiveness, reliability, portability, extensibility

and support from its environment, among other
riteria. The design of C strikes a

balan
e of all these
onsiderations, a balan
e that is both a

eptable and appealing.

Again,
iting Rit
hie: \C is quirky,
awed, and an enormous su

ess. Although

a

idents in history surely helped, it evidently satis�ed a need for a system imple-

mentation language eÆ
ient enough to displa
e assembly language, yet suÆ
iently

abstra
t and
uent to des
ribe algorithms and intera
tions in a wide variety of

environments.".

While Rit
hie has a modest view of things, another
ommentator, Ri
hard P.

Gabriel was more emphati
: \Right now, the history of programming languages is

at an end, and the last programming language is C".

10

1.2.2 C and C++

Stroustrup intended C++ to be a stri
t superset of the C language, as C was
ir
a

1980, extending the
ore language with a stri
ter type system, some modularity,

better data abstra
tion me
hanisms, ex
eption handling, and a number of other

features that took
are of some of C's more obvious short
omings [51℄. However, the

fundamental goal of trying to make high-level paradigms, su
h as obje
t-oriented

programming,
oexist and
ross-fertilize with other (mu
h lower-level)
onstru
ts

and programming styles was deemed by some self-defeating. Not only that, but the

burden of ba
kwards-
ompatibility meant that some of the undesirable C features

made it into C++, too.

C++ a

eptan
e has been impressive. It is so popular now that the C Standards

Committee had to expli
itly deny that C++ is the future of C. It is
lear now that

the languages are following divergent paths. The di�eren
e is obvious from the way

the languages are evolving: while C is adding more types to the language, C++ is

working on its library, using the already-in-pla
e abstra
tion me
hanisms.

1.3 C's short
omings

As widely a

epted and te
hni
ally remarkable as C is, it has a number of short
om-

ings in several respe
ts and whi
h need addressing with varying degrees of urgen
y.

These de�
ien
ies are only to be expe
ted, sin
e it is a language that has tran-

s
ended its originally intended domain of systems programming and has be
ome a

general-purpose language.

The most-often (and loudest) voi
ed
riti
isms against C are dire
ted towards

its la
k of readability, whi
h diminishes programmer produ
tivity. With respe
t

to readability, C has a number of in
onsisten
ies, for example, unrelated meanings

of the same form (meaning of stati
 when it appears in and outside a fun
tion,

the pointer interpretation of array names, the overloaded break, or subtle varia-

tions between initializers and assignment expressions), mu
h too low-level pointer

semanti
s (as opposed to, for example, Bliss's or Algol's), and several instan
es

11

where
onfusing syntax trips up beginners and experts alike. For example, an awk-

ward type de
laration syntax, derived from Algol 68's type
omposition s
heme

(although most of Algol's adherents would
ringe at the thought).

It has been pointed out that a person
onversant in the way
omputers work

and reasonably familiar with
omputer ar
hite
ture
an immediately make sense

of most of C. This qui
k grasp is even more noti
eable in programmers with some

experien
e in
ompiler writing. It is not out of the question that, at least to

some extent, the semanti
s of the language were motivated by the
ompiler design,

and, what is more, by the
ompiler te
hnology and programming pra
ti
es at the

time of C's in
eption [92℄. Examples of this abound: the programmer must be

aware of what is a
ompile- and a run-time
onstant, and C is overly fond of side-

e�e
ts in expressions (where most programmers trained in other languages, assume

expressions denote only values).

The pra
ti
e of delegating as mu
h as possible to the library (point 4 in the

\spirit of C" above) works reasonably well for a number of tasks and subsystems

(input/output, for example, where it enhan
es the portability of the language as a

whole), but it seems there are times when the same strategy does not work as well,

as is the
ase with the simulation of several
ontrol stru
tures su
h as ex
eptions,

oroutines, pro
edure
losures, and in parti
ular,
on
urren
y [24℄, where it has

been shown that these abstra
tions
annot be in
orporated into a language via

libraries. Furthermore, the restri
tion imposed by point 5, that language libraries

must be written in C, seems overly stri
t sin
e most modern
ompilers are able to

in
orporate pro
edures written in a di�erent languages, and most modern languages

in
orporate a \foreign fun
tion" interfa
ing me
hanisms.

Another area that needs to be partially resolved within the language, as opposed

to a library, is string manipulation. Due to its origins in the systems programming

world, C does not o�er strong support for
hara
ter data. The language treats

strings like �xed-length arrays of integers (
hars), with the added guarantee that

string literals are terminated with a null
hara
ter (whi
h therefore
an not be

ontained within a string)

1

. Other than that, C leaves all string pro
essing to

1

The delimited-string approa
h in C di�ers from an
estor BCPL, whi
h uses a length-�eld.

12

libraries, and the memory management implied by the manipulation of varying-

length strings to the programmer. C's abstra
tion me
hanisms are not powerful

enough for the programmer or the library to do a thorough job in either
ase, sin
e

they
annot provide their own
opy and assignment operations for spe
i�
 types.

The la
k of these operations often results in errors in the use of library fun
tions,

whi
h, in the
ase of the standard string-manipulation and formatted input/output

libraries,
an lead to perni
ious (inadvertent or otherwise) a

ess to the memory

regions, in the form of type unsafety or bu�er overruns, for example. This problem

is detrimental to the overall safety and reliability of the system, parti
ularly in

today's
omputing lands
ape, where text pro
essing shares some of the dominan
e

that was previously the provenan
e of numeri
al
omputing.

Another problemati
 area is C's la
k of modularity. Modularity is one of the

program stru
turing
on
epts that, along with data abstra
tion, was introdu
ed in

the 70s, and sin
e then has gained importan
e as it a�e
ts favorably the mainten-

ability of a programming proje
t. C's support for modularity is minimal, whi
h

for
es programmers to simulate it by distributing their
ode over �les

1

ontaining

prepro
essor dire
tives that guide the reassembly of the
ompilation unit, and then

rely on external tools, like Unix make for �le dependen
ies and
onsisten
y of the

proje
t. This approa
h is a partial solution at best, sin
e more sophisti
ated de-

vi
es, like sele
tive imports or exports, data prote
tion in the form of publi
/private

spe
i�
ations, name
ollision resolution and all but the more basi
 data abstra
tion

lie beyond the prepro
essor and linker's
apabilities. Both the la
k of language
on-

stru
ts (su
h as namespa
es, modules and a way to export entities from them while

prote
ting the rest of the
ode within) and the insuÆ
ient prepro
essing solution

have been widely
riti
ized [93℄.

This omission is eviden
e to the fa
t that exe
ution environments,
ompiler

te
hnology, and
oding style (the de�nition of a good program, the abstra
tions

onsidered building blo
ks for good programs, et
.)
urrent at the time (1970s)

permeated C's design. Many of these ideas and te
hniques have sin
e been sur-

1

C essentialy implements a module with two �les, a header
ontaining
onstants, types and fun
tion

prototypes, and an implementation �le, providing the fun
tion bodies, and perhaps stati
 global

variables and internal fun
tions.

13

passed and the older approa
hes are now depre
ated. This does not mean that

ode of the highest quality,
onforming with one or more of the so-
alled mod-

ern programming paradigms and meeting software engineering requirements in use

today
an not be written in C. To do so, however, stri
t adheren
e to
oding
onven-

tions is required; but this dis
ipline is not linguisti
ally enfor
ed [93℄, and therefore,

there is no help from the
ompiler. Hen
e, even minor deviations from the
onven-

tions, either mali
ious or unsuspe
ting, make it very diÆ
ult for the paradigm to

be maintained.

Finally, it is important to mention another sour
e of users' dissatisfa
tion with

the language. C is been used for a wide variety of purposes, some of whi
h fall

outside its original sphere of appli
ation. For example, as the �rst programming

language, that is, the expository medium through whi
h in
ipient programmers are

taught about basi

on
epts of Computer S
ien
e. As remarkably adaptible as C

has proven to be, sometimes even thriving in these unforeseen domains, being a

tea
hing vehi
le is not C's strongest suit. C8 extends C with features that ease this

rôle somewhat, su
h as a more straightforward de
laration syntax. However, it is

by no means the
ase that the C8 proje
t intends to address all su
h obje
tions in

all programming ni
hes.

1.4 C8 proje
t

The C8 proje
t
harter is twofold:

1. �x C's short
omings

2. add to C modern programming language features

These
hanges must be made in su
h a way that they preserve, from the pra
ti
al

point of view, ba
kwards
ompatibility with C, and from the philosophi
al one,

\C's spirit": a small and simple language that allows unrestri
ted a

ess to the

underlying ar
hite
ture and whi
h requires a minimal run-time environment. In

this respe
t, the C8 proje
t shares the aims of the C99 standardization
ommit-

tee, in that it \attempted to in
orporate valuable new ideas without disrupting the

14

C with Classes

C++

Classi
 C

ANSI C

ISO C

C99

C8

K-W C

SETL

Mesa

Cedar

Figure 1.2: Notable in
uen
es on C8

basi
 stru
ture and fabri
 of the language. It tried to develop a
lear and
onsis-

tent language without invalidating existing programs" [31℄. The di�eren
e resides

in what sort of \new ideas" these proje
ts in
orporate: whereas in Standard C

the main fo
us was on numeri
al extensions, internationalization and foreign lan-

guage interfa
es, C8 is not
onservative with its additions and modi�
ations, and

the introdu
tion of abstra
tion me
hanisms, su
h as parametri
 polymorphism, or

ontrol stru
tures and patterns, su
h as ex
eption handling, tuples and fun
tions

returning multiple values set the pa
e for the modi�
ations to the language. Not

all these features are new, and their an
estry
an be tra
ed in the programming

language literature to the 70s (in the
ase of ex
eptions, for example). A diagram

of the languages that are most in
uential in the design of C8 is shown in �gure 1.2.

Ever from the in
eption of C, a great many proje
ts have had the stated purpose

of extending that language in a variety of ways and
atering to di�erent appli
ation

domains. However, it is hard to
omply with the \spirit of C" as stated above, espe-

15

ially when new abstra
tion me
hanisms are in
orporated into the language. Take,

for example, C++, whose obje
t-oriented me
hanisms for C have been des
ribed

as an attempt to graft a high-level abstra
tion me
hanism to a mu
h lower-level

language, an inherent philosophi
al
lash.

The C8 approa
h is di�erent: �rst it rebuilds the C type system, subsuming C's

semanti
s of expressions, while providing parametri
 polymorphism and overload-

ing. This type system was designed and des
ribed by Glen Dit
h�eld [47℄ in 1994.

In 2003, Ri
hard Bilson implemented a translator that in
orporates Dit
h�eld's

type system, with several extensions [16℄. Of relevan
e to this work is the analysis

of expressions involving fun
tions returning multiple values. With this translator

as a base, the features des
ribed in the present work are introdu
ed.

Contributions of the thesis

The fundamental
ontribution of this thesis is to make the popular C program-

ming language easier to use and more expressive. While several of the features

des
ribed in this thesis are similar to those in prior work, their in
orporation into

C8's more
ompli
ated type system involved signi�
ant di�eren
es in design. As

well, the me
hanisms for implementation of these features from prior work were

often not amenable to approa
hes and te
hniques used in C8 and therefore had to

be reimplemented.

For example, tuples and their
om
omitant operations are derived from those in

the forerunner KW-C proje
t [131℄. However, adding tuples to C is di�erent from

adding them to C8, given the latter's overloading
apabilities. Operations like KW-

C's multiple and mass assignment, although similar in form in C8, have di�erent

e�e
ts (x4.2). Also, although KW-C tuples imply the notion of fun
tions return-

ing multiple values, their utility is limited by the need to \unpa
k" the returning

values into re
eiving temporaries, whi
h is
umbersome when fun
tions
alls are

to be
omposed. This work removed this limitation, and a novel
on
ept of tuple

designation was added to allow for the expression of fun
tion
omposition patterns

that are not found in other programming languages (x4.2.3). From these exten-

sions, several other natural features were designed and implemented, e.g., named

16

or keyword parameters, default values for arguments, and named return values.

Although these latter features are not original, they have proven their usefulness

in other programming languages, and their in
lusion in C8 was deemed desirable.

I extended Bilson's expression analysis algorithm to en
ompass these new forms of

argument passing and provided a
omplete translation into Standard C.

C8 also in
orporates other existing C programming
onstru
ts subtly modi�ed

by this work to enhan
e usage and prevent misuse. Among these are the variations

on C's
ontrol stru
tures (Chapter 3), viz. loops with multiple-level exits, lists and

ranges as
ase guards, and a version of swit
h without default falling through

ases. I have also added features to C8, blending ideas from other programming

languages. One
riti
ally important
ontrol stru
ture me
hanism missing from C

is ex
eption handling. This work added traditional termination ex
eption handling

semanti
s and the more
ontroversial resumption semanti
s from its forerunner,

Cedar. Also, I have designed and implemented a new me
hanism for Ada-like

attributes that integrates well into the existing syntax and semanti
s of C8 (Chapter

5).

While adding all these features to C8, this work strove to remain within the

on�nes of the \spirit of C" (in parti
ular point 8, above). This
onstraint markedly

separates C8 from the most visible C variants, Java and C#, and pla
es it within the

group of languages that extend C while remaining (mostly) ba
kwards-
ompatible

(some of whi
h are des
ribed in the next se
tion). Unfortunately,
omplete ba
kwards-

ompatibility is seldom obtainable, and C8 spe
i�
ally violates this goal to �x some

very questionable features in C. An interesting experiment was designed and per-

formed to assess the e�e
t of all the in
ompatible
hanges in C8 (Chapter 6). The

experiment s
ans a non-trivial body of representative C programs to determine if

the in
ompatible
hanges introdu
ed in this work have any pra
ti
al rami�
ations,

i.e., estimate how mu
h real lega
y C
ode would have to be modi�ed to work with

C8. The results of the experiment indi
ate that very few in
ompatibilities do o

ur.

17

1.4.1 Related work

Narain Gehani is the for
e behind several diale
ts of C (C with ex
eptions, Con-

urrent C), that extended the language by adding, �rst ex
eptions and then
on-

urren
y. He made no attempt to �x any existing problems in the language. A

similar e�ort was made by Timothy Budd in Oregon State, who added I
on-style

generators to C, and
alled the blend Cg. Cox's Obje
tive C [38℄ is an attempt to

enri
hing the C type system with obje
t-oriented
onstru
ts. C++ had the same

goal, and has already been dis
ussed.

Cy
lone [127℄ pla
es a lot of emphasis on safety. As su
h, it extends the C run-

time environment (it provides \fat pointers" and array subs
ript
he
ks), introdu
es

region-based (but still manual) memory management and a more stri
t type system.

These extensions prevent errors
ommon in C programs, su
h as bu�er over
ows

1

.

Its synta
ti
 extensions in
lude ex
eptions, namespa
es, parametri
 polymorphism

and tagged unions.

A number of
ompilers (
ommer
ial and otherwise) extend the language in some

ways. g

's extensions have been mentioned already and are dis
ussed in more

detail in the remainder of this thesis. Pike and Thompson's C
ompiler for Plan 9

[99℄ provides stru
ture displays (a way to form stru
t expressions dynami
ally). It

also makes anonymous nested stru
ts or unions in stru
ts \transparent", so that

programmers
an refer to members of the inner
onstru
t.

It is worth mentioning that the original designer of C was working on a new

programming language
alled Limbo [77℄ that, although strongly in
uen
ed by C,

is not ba
kwards-
ompatible and it
hanges a number of features, for example,

it dispenses with the C-style de
laration syntax and adopted Pas
al's. It also

in
orporates a mu
h
ompli
ated runtime system, whi
h in
ludes garbage
olle
tion,

bounds
he
king and
on
urren
y. This is more a
ontinuous exploration of the

programming language design spa
e on their part, and by no means an impli
it

dismissal of C.

1

Of
ourse, these problems are not ex
lusive to programs written in C, but there are features in

the language |e.g., pointer arithmeti
 and un
he
ked subs
ripting| that make it easier for the

programmer to
ause problems, and they go largely un
he
ked.

18

1.5 C8 translator

1.5.1 Bla
k box view

Many des
endants of C have been prototyped as prepro
essing translators. This

parti
ular kind of translator
an be des
ribed as a
ompiler front-end: a program

that does the lexi
al, synta
ti
al and semanti
al analyses and whose output is high-

level language program text, in this
ase C.

This approa
h has several advantages over building a full-
edged native
om-

piler, su
h as portability, possibility of interfa
ing with di�erent optimizers, qui
ker

dete
tion of errors, and several possibilities that the use of one-pass
ompilers pre-

luded.The strategy is parti
ularly appealing if the output language is C, whi
h

has proven to be e�e
tive as an \universal intermediate representation" of sorts.

Most importantly, a translator of an extended language to the language it extends

is signi�
antly simpler to
onstru
t.

Of
ourse, this
omes at the
ost of a slight degradation in performan
e when

ompared to a native
ompiler. Furthermore, if not enough information is passed to

the output program, the
apability of symboli
ally debugging the original program

is also diminished.

However, there are language features that simply
annot translate dire
tly to the

target language, or that translate only partially. For example, ex
eption handling

had to be done in the most straightforward of ways sin
e the translator has no a

ess

to lower level information, in parti
ular the addresses in memory a parti
ular blo
k

of
ode o

upies when translated to ma
hine language.

1.5.2 Fun
tional des
ription

C was originally designed with a bottom-up
ompilation model: no intermediate

representation is ne
essary and the
ode
an be generated as soon as possible

1

. The

1

As opposed to other languages, for example Ada, where the assumed
ompilation model depends

on a tree representation.

19

more elaborate me
hanisms introdu
ed in C8 pre
lude this mode of operation, and a

staged translation is required. The parser
onstru
ts an intermediate representation

that is later traversed in various ways until �nally the
ode is generated.

Two intermediate representations of the program are built. The �rst is
losely

tied to the grammar of the language, and more amenable to re
e
t future modi�-

ations. To some extent, it also re
e
ts the development tools used (flex, bison,

et
.) and the at times awkward intera
tion with one another (e.g., C++ STL and

bison).

On
e the building of this representation is
ompleted, a se
ond representation,

modelling the semanti
s of the language more
losely (in e�e
t, an Abstra
t Syn-

tax Tree), is
onstru
ted. On
e this se
ond stru
ture is in pla
e, the translation

pro
ess is
arried out by several passes that rewrite se
tions of the AST. Some of

these rewriting passes are des
ribed in mu
h greater detail in the remainder of this

do
ument.

After all these rewriting passes have been
ompleted, what remains (for a valid

C8 program) is the AST of a C program, whi
h
an then be mapped to a string

that is the output of the translator. A driver takes this output and, then feeds it

to the
ompiler, along with a number of
ompiler
ags.

20

Chapter 2

De
laration Syntax

Ever sin
e Algol introdu
ed the
on
ept of de
laration of obje
ts in a program

1

,

and that these de
larations are de
orated by the type of the obje
t, a sublanguage

for type des
ription had to be in
orporated into programming languages. In most

languages, starting with Algol W and Algol 68, type spe
i�
ations are built in
re-

mentally from a
olle
tion of primitive or basi
 types by the (repeated) appli
ation

of type
onstru
tors.

In C, de
larations are
omposed of two parts, the base type and a de
larator,

whi
h in
ludes the name of the entity. If an obje
t is not of a built-in type, a de-

s
ription of the type is provided in its de
laration, and this des
ription is
omposed

of basi
 types, type synonyms (introdu
ed via typedef) and
onstru
ted types.

Type
onstru
tors in
lude a pointer
onstru
tor (*), that takes a type as argument;

an array([℄)
onstru
tor that takes a type and possibly a dimension spe
i�
ation;

a fun
tion
onstru
tor that takes a return type and a list of parameter types; the

re
ord
onstru
tor (stru
t) and the undis
riminated disjoint union
onstru
tor

(union), that take list of types as members, together with a name for ea
h of them;

or enumeration
onstru
tors (enum), that takes a list of enumeration
onstants. A

type spe
i�
ation might be further adorned with quali�ers (in C99
onst, restri
t

and volatile). Finally, a de
laration
an be further adorned with one of six storage

1

The C standard [6℄ uses the word \obje
t" to denote a region of memory
ontaining a value, as

opposed to other interpretations in the
ontext of di�erent programming paradigms.

21

lasses: auto, extern, register, stati
, inline and fortran. Any
ombination is

allowed as long as it makes some sense.

Throughout the
ourse of its evolution, C's de
laration syntax has
hanged

somewhat. In its �rst in
arnation, and all the way through the version des
ribed in

the �rst edition of K&R, C did not require the spe
i�
ation of the base type of an

obje
t, nor did it require spe
i�
ations for the return type or number of arguments

in a fun
tion. Where appli
able, these obje
ts' type was
onsidered to be int by

default:

x; // same as int x

*x; // same as int *x;

foo(p); // int foo(int p);

foo(x,y) // K&R old-style fun
tion de
laration

int x,y f

// same as int foo(int x, int y)

g

Pointers were de
lared ex
lusively using the array
onstru
tor rather than a star

[107℄:

int ip[℄; // instead of int *ip;

a notation that survives to this day in a vestigial form in argument de
larations.

C89 introdu
ed type spe
i�ers (
onst and volatile), fun
tion prototypes (that

allowed programmers to spe
ify the argument types in a fun
tion de
laration, rather

than in a fun
tion de�nition) and some additional quali�ers (e.g., unsigned). C99

depre
ated the interpretation of missing base types meaning int, and in
orporated

more primitive types and the restri
t quali�er.

Unfortunately, these alterations have done little or nothing to
hange the fa
t

that the de
laration syntax of C is one of the most often voi
ed
omplaints about

the language.

22

2.1 C De
laration Syntax

C is a dire
t des
endant of B, B of BCPL, and BCPL of CPL (�gure 1.1). CPL

has a design so ambitious that it was not entirely implemented. BCPL (Basi

CPL) restri
ted CPL in several ways, one of whi
h was to substitute the diversity

of types with a single one, the word. B further s
aled down BCPL, spe
ializing it

for systems programming. Be
ause of BCPL's word-based system was insuÆ
ient

for the purposes of Thompson and Rit
hie, C adopted parts of CPL's type system,

albeit in a di�erent guise. In parti
ular, C's de
laration syntax is original and

ompletely di�erent from CPL's (whi
h follows Algol's).

C's
hoi
e of syntax for de
larations is based on the idea that the de
laration

of an entity should look like the use of that entity in an expression. To this e�e
t,

tokens denoting operators are re
y
led in a de
laration
ontext to adorn base types

and entities. Although this design
ompli
ates the parsing of the language

1

, the

symmetry between de
laration and use was
onsidered by the inventors worth the

trouble.

At a �rst glan
e, this s
hema is both elegant and e�e
tive,
onsider:

Des
ription De
laration Use

int variable int x x

pointer to an int int *x *x

/* dereferen
e */

array of 10 ints int x[10℄ x[5℄

/*subs
ript */

fun
tion taking and return-

ing an int

int foo(int) foo(x)

fun
tion taking an int and

returning a pointer to an int

int *foo(int) *foo(x)

/* dereferen
e */

1

When parsing bottom-up, it is un
lear, upon en
ountering a type
onstru
tor token, whether

the
orre
t parse tree results in an expression or a de
laration, and more
ontext information is

needed.

23

However, this approa
h breaks down as more
ompli
ated obje
ts,
ombining

arrays, pointers and fun
tions, are used:

Des
ription De
laration Use

array of ten pointers

to int

int *i[10℄ *i[5℄

/* subs
ript binds tighter */

pointer to array of ten

int

int (*pi)[10℄ (*pi)[5℄

/* deref and then subs
ript */

pointer to a fun
tion

returning an int

int (*pf)() (*pf)()

array of pointers to

fun
tions returning

int

int (*apf[10℄)() (*apf[5℄)()

When both post- and pre�x type
onstru
tors are used, a de
laration spe
i�
a-

tion is layered (like an onion) around the obje
t name, and is read from the inside

out. However, this rule of thumb does not begin to
larify de
larations like the ones

presented above.

The use of type synonyms introdu
ed via typedef
an ameliorate to some extent

the need for
ompli
ated type de
larations by allowing the in
remental
onstru
tion

of the desired type ([39℄):

typedef
har f
h(); // fun
tion returning a
har

typedef f
h *pf
h; // pointer to fun
tion returning
har

typedef pf
h *apf
h[10℄; // array of pointer to fun
tion returning
har

typedef apf
h *papf
h; // pointer to an array of pointers to fun
tions. . .

This is, at best, only a partial solution to the problem, espe
ially when type quali-

�ers and storage
lasses are brought into play. Type quali�ers and storage
lasses

24

an appear in many orders. The next lines all des
ribe the same obje
t:

onst int volatile x;

int volatile
onst x;

onst volatile int x;

In fa
t, any of the seven possible versions of a quali�ed type is valid, although

obje
ts de
lared with di�erent versions are in
ompatible with ea
h other and with

the unquali�ed type. Type quali�
ation is only relevant in a lvalue
ontext, that

is, when an obje
t with quali�ed type appears on the left side of an assignment or

in the parameter list of a fun
tion prototype. In most other
ases, a quali�
ation

in any other position is dropped. For example, the following is valid:

void bar(
onst int x);

void foo() f

volatile int v
pi;

bar(v
pi);

g

Synta
ti
ally, the type quali�er
onst presents parti
ular diÆ
ulties when
ou-

pled with pointer variables. Sin
e a pointer de
laration des
ribes what type the

identi�er is supposed to point to, it a
tually refers to two entities: the identi�er

and the entity it points at, either of whi
h
an be used in an lvalue
ontext.

int
onst *pi;

onst int *pi;

int *
onst pi;

onst int *
onst pi;

int
onst *
onst pi;

The �rst two lines des
ribe the same obje
t, a pointer that points to a
onst int,

that is, the pointee is not to
hange (in other words, any dereferen
e of the pointer

in a lvalue position is invalid). The next line des
ribes a pointer that
annot point

to a di�erent target (dire
t assignment and modifying pointer arithmeti
, therefore,

25

is forbidden, but an assignment to the dereferen
e is allowed). Finally, the last two

lines, des
ribe a pointer that
annot
hange its target nor
an it assign to the obje
t

it points to.

It is debatable how mu
h the \de
laration mimi
s usage" poli
y is to blame for

how error prone the notation turned out to be. Another fa
tor that
ompounded

the
onfusion is the existen
e of pre�x and post�x type
onstru
tors, that
an be

ombined in various ways. This has been deplored by Dennis Rit
hie himself

1

,

who re
ognized that several synta
ti
 and lexi
al me
hanisms of CPL, in
luding

pro
edure and data de
larations, are more elegant and regular than those in C.

Another problem
omes from the possibility of de
laring more than one obje
t

in the same de
laration statement, but only the base type is distributed a
ross all

variables:

int* x, y; // x is a pointer, y is an int

int *x, *y; // two pointers to int

Beginner programmers, and even experien
ed ones with some familiarity with Pas-

al des
endants are often surprised to dis
over the meaning of de
larations like the

above, espe
ially sin
e errors are not issued by the
ompiler until inappropriate

appli
ation of an operator, potentially far removed from the de
laration itself.

In
on
lusion, C de
laration syntax is fraught with
ompli
ations, whi
h still

trip even experien
ed programmers

2

. These
ompli
ations are so fundamental that

1

Rit
hie has suggested that the de
laration syntax would have worked mu
h better had the in-

dire
tion operator been post�x rather than pre�x. In Pas
al, where de
laration syntax is not

onsistent with usage, pointers look like:

var iptr : ^integer;

.

.

.

new(iptr);

iptr ^ := 10;

writeln('the value is ', iptr^);

dispose(iptr);

2

Even spe
ialized tools, like
de
l, that translate a C de
laration into English and vi
eversa have

been developed.

26

su

essive revisions of the language have not solved the problem. A more radi
al

hange thereto is ne
essary.

2.2 C8 De
larations

Till [131℄
onstru
ted the �rst implementation of an extended de
laration syntax;

however, this implementation required several additional keywords to disambiguate

the grammar. Buhr et al [26℄
onstru
ted the se
ond implementation but still re-

quired one additional keyword for disambiguation. In C8, I eliminated all super-

uous keywords previously needed, and extended the C8 de
laration grammar to

in
orporate the new de
laration syntax among the other polymorphi
 extensions in

de
larations.

C8 provides simpler type, variable, and fun
tion de
larations. All the tokens

denoting type
onstru
tors and their meaning are retained, but they are all pre�x

and right-asso
iative. This greatly simpli�es
ompli
ated de
larations:

Des
ription C C8

int variable int x int x

pointer to an int int *x * int x

array of 10 ints int x[10℄ [10℄ int x

fun
tion taking and return-

ing an int

int foo(int) [int℄ foo(int)

fun
tion taking an int and

returning a pointer

int *foo(int) [int *℄foo(int)

array of ten pointers to int int *x[10℄ [10℄ * int x

pointer to array of ten int int (*pi)[10℄ * [10℄ pi

pointer to a fun
tion return-

ing an int

int (*pf)() * [int℄() pf

array of pointers to fun
-

tions returning int

int (*apf[10℄)() [10℄ *[int℄() apf

array of pointers to fun
-

tions

int (*(*papf)[10℄)() * [10℄ *[int℄() papf

27

Even the most
ompli
ated de
larations
an now be read left to right with-

out
omplex binding rules to remember, and without having to resort to auxiliary

typedefs.

Quali�ers and storage
lasses are pla
ed to the left of the base type, but are

otherwise used in the normal way with the new de
larations:

Des
ription C C8

onst pointer to

onst int

int
onst *
onst x
onst *
onst int x

onst pointer

to array of 10

onst int

onst int (*
onst pai)[10 ℄
onst * [10 ℄
onst int pai

extern array of

10 ints

int extern ai[10 ℄ extern [10 ℄ int ai;

stati
 pointer to

onst int

onst int stati
 * pi stati
 *
onst int pi

When de
laring multiple entities, the entire type spe
i�
ation is distributed

a
ross all variables in the de
laration list:

* int x, y; // two pointers to int

* [10℄ * int x1, y1; // two pointers to array of pointers to int

Note that in C8 a fun
tion return type is en
losed in square bra
kets, and that

an empty parameter list denotes a fun
tion taking no parameters (as in C++)

whereas in C the same notation means an unspe
i�ed number of parameters.

[℄ g(); // void fun
tion taking no arguments

[int℄ f(); // fun
tion returning int taking no arguments

[
har,int℄ f(); // fun
tion returning a tuple (
fr.
hapter 4)

Finally, de
laration quali�ers and storage
lasses are only allowed to appear at

28

the start of a C8 routine de
laration

1

:

extern [int x ℄ g(int y) fg

Di�erent styles of type spe
i�
ation
an be used in separate de
laration state-

ments (but not intermixed in the same de
laration), even in the same blo
k of
ode.

Likewise, either style
an be used in any
ontext that requires a type spe
i�
ation,

for example, a
ast, sizeof , or typeof
ontexts. The only
ase where intermixing

of de
laration styles in the same de
laration is allowed is de
laration of fun
tion

return and parameter lists of C8-style fun
tions:

[int (*x)[10℄ ℄ f(int (*y) [10℄); // C-style return and parameter de
larations

[* [10℄ int x℄ g(* [10℄ int y); // C8-style return and parameter de
larations

This ex
eption allows ba
kwards
ompatibility with old-style ma
ros generating C

de
larations, e.g.:

#de�ne ptoa(n, d) int (*n)[d℄

[ptoa(x,10) ℄ f(ptoa(y,10));

In general, intermixing de
larations styles is neither re
ommended nor sup-

ported, as this pra
ti
e tends to
ompromise
larity. It is hoped programmers

(espe
ially new ones) will prefer C8's de
laration style to C's.

C8-style de
larations are rewritten during parsing to their equivalent C forms,

whi
h means that the use of either form of de
larations does not a�e
t performan
e

in any way.

1

C99 has adopted the same rule and depre
ated alternate usage. It is, of
ourse, up to time to

determine how e�e
tive this poli
y will be, but due to the extant lega
y
ode, it is safe to say

that it is hopeless.

29

2.3 Related work

C's syntax for de
larations has been the
onstant sour
e of
omplaints and a sig-

ni�
ant number of reengineering e�orts have gone into making the sublanguage

more readable, for example by Anderson [10℄ and Sethi[112℄. Sethi's proposal is

notable be
ause he made the indire
tion operator post�x. The style of de
lara-

tions this modi�ed syntax allows is mu
h
learer than C's (in Sethi's proposal, the

indire
tion operator, denoted in C by * is written ^):

har (* (*x[3℄)())[5℄; // C

har x[3℄^()^[5℄; // Sethi

[3℄ * [* [5℄
har ℄ () x; // C8

Sethi's syntax is
learly more readable than C's, and probably just as
lear as C8's.

Interestingly, it still allows a programmer to reuse the \
har" at the beginning of

the de
laration for subsequent de
larations, in the form:

har x[3℄^()^[5℄, y^[5℄, z;

However, the distan
e between the type spe
i�er and the se
ond and third variables

is large, and not
ondu
ive to
larity. C8 does not su�er from this problem.

Several other attempts have been made to �x C's de
laration syntax, whi
h

some subsequent languages inherited. For example, Werther et al. [135℄ suggest

hanging the C++ syntax de
laration, to not only in
orporate Pas
al's ^ pointer

onstru
tor, but also ML's fun
tion type
onstru
tor �>. C8's solution requires

less synta
ti
 innovations, while attaining the same
larity of expression.

30

Chapter 3

Control Stru
tures

Like most imperative languages, C in
ludes the traditional
ontrol stru
tures of un-

onditional jumps,
onditional bran
hing and sele
tion, and looping, largely derived

from those in BCPL and Algol. C8 follows suit, but it introdu
es some variations

in the interests of program readability and maintainability. This
hapter des
ribes

how I augmented C8's
ontrol
ow by �xing and extending existing C
onstru
ts

and adding new ones. Further
hanges in
ontrol-transferring me
hanisms, spe
i�-

ally fun
tion
alling, are des
ribed in following
hapters.

3.1 Multi-level exits

The stru
tured programming s
hool introdu
ed the notion that
ertain
ode stru
-

tures, e.g. loops and subroutines, should have only one entry and one exit. While

the one-entry restri
tion seems logi
al and has remained largely un
ontested, expe-

rien
e suggests that having multiple exit points is useful and sometimes ne
essary.

In fa
t, many programmers simulate multiple exit points by testing a multitude of

logi
al
ags, resulting in
ode that is so diÆ
ult to read and maintain that these

use of
ags is often
onsidered the data equivalent to the unstru
tured use of the

goto statement.

To alleviate this problem, language designers have provided fa
ilities to exit

loops and fun
tions at di�erent points. In C, these fa
ilities take the form of the

31

register t;

t := head;

while (t := . .t) 0 do

while (t := . .t) 0 do

if .(.t + 1) 0 then exitloop[2℄ .t

(a) Numbered exit

register t;

t := head;

l: while (t := . .t) 0 do

while (t := . .t) 0 do

if .(.t + 1) 0 then leave l with .t

(b) Labeled exit

Figure 3.1: Multilevel exit in Bliss

statements break and
ontinue for loops, and return for fun
tions.
ontinue is

valid only inside a loop and when en
ountered
auses the
urrent loop iteration to

terminate and
ontrol
ow transfers to the beginning of the
losest en
losing loop

to start a new iteration. break
an be used in a similar fashion, with the sole

di�eren
e that all loop iterations are terminated and
ontrol
ow transfers past the

end of the
losest en
losing loop. Buhr [23℄
alls this
onstru
t a multi-exit loop.

However, a C multi-exit loop is limited in the sense that it is restri
ted to the

losest en
losing loop. A generalization of this
apability is a stati
 multi-level

exit, whi
h allows transfering out of a multiple nested
onstru
t to a stati
ally

determined lo
ation. Bliss [140℄, a systems programming language designed at

CMU in the 70s and no longer in use,
ontains the equivalent to C's unquali�ed

break (of the form exitloop

1

), as well as a multi-level exit statement of the form

exitloop[n℄, where the parameter n indi
ates the number of
ontrol stru
tures to

be exited from. This
onstru
t is understandably hard to maintain, sin
e adding

or removing nested
ontrol stru
tures required updating all the o

urren
es of n.

Later versions of the language allowed the loops to be labeled (see Figure 3.1).

Peterson et al. [97℄ dis
uss the
apabilities of similar
onstru
ts in extenso.

Ada [48℄
ombined both forms by allowing exit statements to expli
itly spe
ify

the en
losing
ontrol stru
ture out of whi
h
ontrol is to transfer; if the label is

missing, the innermost
ontrol stru
ture body is assumed. Several programming

languages (e.g., Java and Perl) adopted this
onstru
t. Examples of this devi
e
an

1

exitloop takes an optional return value, sin
e
ontrol stru
tures in Bliss are expressions, rather

than statements.

32

OUTER: forea
h $i (�where) f

forea
h $j (�f$ig) f

single-level break

last if $j == �1;

last OUTER if $j == $what;

g

g

(a) Perl

Outer:

for I in Where'Range loop

for J in Where(I)'Range loop

�� single-level break

exit when Where(I)(J) = �1;

exit Outer when Where(I)(J) = What;

end loop;

end loop;

(b) Ada

Figure 3.2: Multilevel break

be seen in �gure 3.2. As well, languages like Java and C# allow for general blo
ks

(i.e., those that are not the body of a looping
onstru
t) to be labeled and referred

to by multi-level exit statements.

C8 adopts C's looping
onstru
ts un
hanged, and extends them to the more

general s
heme of Java and C#. This is, labels identifying a blo
k
an be used

in a break statement to transfer
ontrol to the instru
tion immediately following

the end of the blo
k. Loop statements
an also be labeled and the behaviour is

equivalent to the loop blo
k being labeled. Also,
ontinue statements within a

loop
an refer to these labels to immediately pro
eed to the next iteration.

In e�e
t, all of these
onstru
ts are a restri
ted forms of goto. They allow only

bran
hing to the beginning and the end of en
losing
ontrol stru
tures, and therefore

annot be used to
reate
y
les in the
ontrol graph. In this way,
onstru
tion of

loops is restri
ted to the language loop statements, and a legitimate use of goto

[81℄ is given a new synta
ti
 form. The C8 translator makes use of the lower-level

goto to implement these extended
ontrol stru
tures, as
an be seen in �gure 3.3.

Noti
e that a
ontinue or break referen
ing the
losest en
losing loop or swit
h

is not transformed into a goto.

33

Blo
k: f

Loop1: for (i = 0; i < 10; i += 1) f

Loop2: for (i = 0; i < 10; i += 1) f

Swit
h: swit
h (i) f

ase 1:

if (i < 5) f

ontinue Loop1;

ontinue Loop2;

ontinue;

break Blo
k;

break Loop1;

break Loop2;

break Swit
h;

g // if

g // swit
h

g // for

g // for

g // blo
k

L0 : f

L3 : for (i=0;i<10;i+=1) f

L2 : for (i=0;i<10;i+=1) f

L1 : swit
h (i) f

ase 1:

if (i<5) f

goto L5 ;

ontinue;

ontinue;

goto L6 ;

goto L7 ;

break;

goto L4 ;

g // if

;

L4 : break;

g // swit
h

g // for

L5 : /* null statement */ ;

g // for

L7 : /* null statement */ ;

g // blo
k

L6 : /* null statement */ ;

Figure 3.3: Multilevel exit in C8(left) and C translation (right)

34

3.2 Sele
tion statements

An often-en
ountered need during programming is to pi
k out one
ourse of a
tion

among several (ex
luding all others). Chara
teristi
ally, programming language de-

signers went about providing for this ne
essity by su

essive approximations: �rst

there was the two-way sele
tion statement or expression, almost universally taking

the form of an if . This simple binary bran
hing
an be s
aled to an arbitrary

number of
ases/a
tions by nesting or
as
ading if -then-else statements. When

as
aded, the number of if-guards or test
onditions often
orrespond to mutually

ex
lusive (and presumably non-overlapping) alternatives. Several proposals to pro-

vide some synta
ti
 sugaring to su
h a programming artifa
t have been advan
ed.

If the test is on the same variable or expression (and this is of an ordinal type),

writing the
ondition repeatedly is tedious, and often introdu
es mistakes. C.A.R.

Hoare

1

introdu
ed the multiway bran
hing statement in Algol,
alled a
ase state-

ment, whi
h is
onsidered a better solution to the above problem, as it is more

readable and less prone to mistyping of the
ondition.

Most languages o�er a form of the multi-way sele
tion statement (swit
h in

the C-family, or
ase in Pas
al's des
endents, for example), with some variations,

mostly in the kind of expressions that
an be used to label the
ases (lists of values,

ranges, even full-
edged predi
ates). Di�erent types of guarded expressions have

also been extensively experimented with (Unix shells, to
ite an extreme example,

o�er a
ombination of a string test expression and regular expression patterns as

ase labels).

The form this statement has taken in C has been widely
riti
ized, and it is

often listed among the most annoying and dangerous
hara
teristi
s of the lan-

guage. Originally inherited from BCPL [106℄, it took a somewhat idiosyn
rati

bent when \falling through"
ase
lauses was made the default behaviour. In most

other languages, the exe
ution of the
ode asso
iated with a parti
ular
ase
lause

pre
ludes the exe
ution of any other
lause in the same swit
h statement. In par-

1

Hoare said of this
onstru
t \This [the
ase statement℄ was my �rst programming language

invention, of whi
h I am still most proud, sin
e it appears to bear no tra
e of
ompensating

disadvantage" [66℄.

35

ti
ular, during the exe
ution of a
ase
lause, the presen
e of the following
ase

lause indi
ates the
ompletion of the a
tion triggered by the alternative and the

transfer of
ontrol to the next statement after the swit
h statement. In C, the

programmer has to expli
itly indi
ate this transfer by inserting a break statement

to exit the swit
h statement. The rationale behind this design is that it makes

up for the la
k of ranges and more
omplex expressions in
ase labels, but it is a

de
ision that still ba�es beginners (espe
ially if they have been exposed to other

languages with di�erent semanti
s).

The overloaded use of the name break (used both to exit swit
h and loop

statements) does not help matters either. In the interest of minimalism (or probably

as a result of his using an outdated BCPL manual [106℄) Rit
hie de
ided to reuse

the keyword break rather than introdu
e another (BCPL settled for the keyword

end
ase). This de
ision has proven to be unfortunate, as it leads to errors, an

extreme example of whi
h is the one that took down AT&T's whole long-distan
e

network [3℄, whi
h has been attributed to a bug
aused by a break in
orre
tly

asso
iated with a swit
h when the programmer's intent was to exit the en
losing

looping statement.

Interestingly, the C-inspired languages, most notably Java, preserve falling

through
ases as the default behaviour, with experien
ed C programmers more

in mind than beginners (some C programmers even design the
ase labels in their

ode to rely on fall-through). Mi
rosoft's C#, one of the latest additions to this

family of languages, departs from this tradition by assuming fall-through when

fa
ed with empty
ases, but synta
ti
ally requiring a break at the end of all non-

empty
ase, and, should fall-through be required, for
ing the programmer to make

it expli
it via gotos. C#'s attempt,
ommendable as it may be, will probably

throw o� old-s
hool programmers by pla
ing additional
onstraints on a familiar

stru
ture.

The C8 solution goes halfway, keeping the traditional swit
h
onstru
t (almost)

un
hanged, but also providing labeled breaks (x3.1), whi
h help prevent errors like

the one des
ribed above, by stating expli
itly what
onstru
t the break is intended

to exit, and by introdu
ing a new
ontrol statement,
alled
hoose, des
ribed

below.

36

As mu
h as the preservation of the swit
h semanti
s was a design goal (for

ba
kwards
ompatibility), some
hanges were introdu
ed for the sake of uniformity

with other
on
epts in the language. Sin
e these
hanges are in
ompatible with

C, the translator might signal working C
ode as invalid C8. These
hanges are

the main sour
es of in
ompatibilities between C and C8 programs, and, along with

the
lash of identi�ers with new keywords, the most likely to
reate problems with

lega
y
ode. In pra
ti
e, however, real
ode seldom makes use of the C
onstru
ts

that C8
hanges, and therefore, the impa
t of the in
ompatibilities is minimal (for

a systemati
 study of these issues, refer to
hapter 6).

The major di�eren
e between C8's swit
h/
ase and C's is that
ase
lauses

are not allowed anywhere but in the (�rst-level) body of a swit
h statement. This

restri
tion is geared to prevent jumping into a
ontrol stru
ture, with the possibility

of bypassing invariant-
he
king
ode, variable de
laration or initialization and other

ru
ially important statements. The ability to `interweave' a swit
h with other

ontrol stru
tures, along with the default fall-through from
ases, allows for
ode

like the
lassi
 Du�'s devi
e (�gure 3.4). Du�'s devi
e has been
alled \the most

dramati
 use yet seen of fall through in C". It was dis
overed by Tom Du�, while

unrolling loops in the interests of performan
e and rewriting the unrolled versions by

interla
ing the stru
tures of a swit
h and a loop (resulting in a so-
alled \unnatural

loop" [94℄). While Du� himself
ould not pla
e his devi
e as an argument for or

against fall-through [118℄, C8 designers had no su
h qualms and set Du�'s devi
e,

for all its potential eÆ
ien
y gain and ingenuity, squarely in the
uriosity bin.

A minor di�eren
e between C and C8's swit
h statements
on
erns
ode pla
ed

between the swit
h and the �rst
ase label. Code in that position is synta
ti
ally

valid in both languages, but it is handled di�erently. While C does allow de
la-

rations to have a s
ope that in
ludes all the
ase
lauses, it does not guarantee

that initialization of these entities is performed. Other than de
larations,
ode

in this position is
onsidered \unrea
hable" and
an only be exe
uted if it is a
-

essed through a goto statement. This behaviour is
onfusing and in
onsistent

with all other de
laration
ontexts in the language. Therefore, C8 adopts alterna-

tive semanti
s: initialization of these de
larations is guaranteed. To a
hieve this

semanti
s, the translator generates an extra blo
k around the swit
h and hoists

37

register n = (
ount + 7) / 8; /*
ount > 0 assumed */

swit
h (
ount % 8)

f

ase 0: do f *to = *from++;

ase 7: *to = *from++;

ase 6: *to = *from++;

ase 5: *to = *from++;

ase 4: *to = *from++;

ase 3: *to = *from++;

ase 2: *to = *from++;

ase 1: *to = *from++;

g while (��n > 0);

g

Figure 3.4: Du�'s devi
e

initial de
larations to the front of that blo
k. This transformation is illustrated in

�gure 3.5.

3.2.1 Case labels

Histori
ally, the swit
h statement des
ends from the swit
h
onstru
t of Algol

60, whi
h is a spe
ialization of Fortran's
omputed gotos. C's swit
h di�ers from

Algol's in a number of respe
ts, most notably in the fa
t that ranges are not al-

lowed as
ase labels (although they were
onsidered for in
lusion in the pro
ess of

developing the ANSI C89 standard [9℄).

Part of the rationale behind the default fall-through between
ases is that the

same
ode
an apply to a variety of options, whi
h permits
ode reuse. It also gives

rise to a number of idioms that (partly) make up for the limited
apability of the

38

swit
h(i) f

int i = 4;

ase 0:

i = 17;

/* fall through */

default:

printf("%d\n", i);

g

(a) C8 version

f

int i = 4;

swit
h(i) f

ase 0:

i = 17;

default:

printf("%d\n", i);

g

g

(b) C translation

Figure 3.5: De
laration hoisting in sele
tion statements

value labels, in parti
ular, for lists of unrelated values, for example:

swit
h (i) f

ase 1:

ase 2:

ase 8:

ase 22:

ase 43:

do something();

g

Although this is a well-established idiom, it often falls short of its aim. In

39

parti
ular,
onsider the
ode fragment:

swit
h (i) f

ase 1:

ase 2:

ase 3:

ode range 1to3();

break;

ase 50:

ase 51:

ase 52:

ode range 50to52();

break;

g

and similar instan
es when
onse
utive values have to be manually enumerated,

a task that is both tedious and error-prone. C8's designers have determined that

the introdu
tion of more elaborate
ase labels is ne
essary. A programmer
an

spe
ify a range of
onse
utive values in a
ase label by using either g

-style (start

: : : end) or C8 start~end syntax

1

, where start and end have to be of
omparable

integral types, for whi
h an in
rementing or de
rementing sequen
e
an be inferred

(i.e., they may be integrals or enumeration types in as
ending or des
ending order).

Failure to
omply with this requirement results in the
ompilation pro
ess issuing

a type-
he
k error.

Ranges are implemented by expansion to the
orresponding falling-through
ase

statements, thereby introdu
ing no performan
e degradation
ompared to standard

C. A more dire
t translation into g

 ranges
ould
on
eivably be
ompiled into a

more eÆ
ient representation. An illustration of the kind of transformation
urrently

implemented in the system is presented in �gure 3.6.

1

C8 adopted a di�erent syntax than the g

's ellipsis to denote a range, be
ause its spe
i�
ation,

1 : : : 10, requires spa
es around the ellipsis, otherwise it is tokenized as \1.",
ausing a syntax

error.

40

typedef enum

f ONE, TWO, THREE g options t;

.

.

.

swit
h (i) f

ase ONE . . . THREE:

printf("In enumeration\n");

break;

ase 3 . . . 5:

printf("Between 3 and 5\n");

break;

ase 6 ~ 10:

printf("Between 6 and 10\n");

break;

default:

printf("Too high (%d)!\n", i);

break;

g

enum anonymous0

f

ONE C13e anonymous0,

TWO C13e anonymous0,

THREE C13e anonymous0,

g;

.

.

.

swit
h (i i) f

ase ONE C13e anonymous0:

ase TWO C13e anonymous0:

ase THREE C13e anonymous0:

printf("In enumeration\n");

break;;

ase 3:

ase 4:

ase 5:

printf("Between 3 and 5\n");

break;;

ase 6:

ase 7:

ase 8:

ase 9:

ase 10:

printf("Between 6 and 10\n");

break;;

default :

printf("Too high (%d)!\n", i);

break;;

L0 : break;

g

Figure 3.6: Use of ranges and its translation.

41

3.2.2
hoose statement

The C8 designers
hose to \tinker" with some obs
ure problems with the swit
h

statement, even at the
ost of ba
kwards
ompatibility. Nonetheless, the problems

with swit
h are too fundamental, and
annot be resolved without invalidating a

signi�
ant amount of lega
y
ode. As an alternative
ourse of a
tion, a new
ontrol

stru
ture,
hoose, is provided as an (almost) drop-in repla
ement. The
hoose

statement takes the form:

h
hoose statementi ::= `
hoose' `(' hexpressioni `)' f h
ase labeli g+ hstatementi

j `
hoose' `(' hexpressioni `)' `f' [hde
laration listi ℄ f h
ase
lausei g+ `g'

h
ase labeli ::= [`
ase' h
ase valuei j `default' ℄ `:'

h
ase
lausei ::= f h
ase labeli g+ hstatement listi [`fallthru' [`;' ℄ ℄

Inside a
hoose blo
k, the start of a new
ase
lause signals the exit from the

blo
k. The only ex
eption to this rule o

urs when the last statement of a
ase

is a fallthru statement, whi
h provides the same termination semanti
s as a
ase

lause in a swit
h statement.

hoose (test) f

ase 1:

/* impli
it break, exit blo
k */

ase 2:

/* expli
it fall through */

fallthru;

ase 3:

/* . . . do something else . . . */

g

The redundan
y of two sele
t statements, although seemingly a departure from

the C way of doing things, was introdu
ed in the hope that new programmers

would use the new
hoose statement if they are �rst introdu
ed to it. The more

42

int fred() f

int i;

hoose (i) f

ase 3:

i = 5;

ase 2, 4:

i = 3;

fallthru;

default:

i = 3;

g

g

int fred Fi ()

f

int i i;

swit
h (i i)

f

ase 3:

(i i=5);;

break;;

ase 2:

ase 4:

(i i=3);;

/* null statement */ ;;

default :

(i i=3);;

break;;

L0 : break; g

g

Figure 3.7: Translation of the
hoose statement.

natural semanti
s of the
hoose statement may gradually attra
t more experien
ed

programmers, rendering the swit
h statement obsolete.

Implementing the
hoose statement is a matter of introdu
ing a simple rewrite

in the Abstra
t Syntax Tree. This rewrite
asts every
hoose statement and its

orresponding blo
k into an equivalent swit
h, where the impli
it breaks are in-

serted in their proper pla
es, and the fallthru statements are elided (see �gure

3.7).

3.3 Ex
eption handling

The ability to exit loops and blo
ks from various points to a stati
 lo
ation naturally

generalizes in at least two dire
tions. The �rst is to extend the ability to jump

out of other
onstru
ts, in parti
ular, to jump out of fun
tion a
tivations. The

43

se
ond dire
tion is a relaxation on the requirement of exiting to a stati
 lo
ation.

Both features are very useful. Exits from arbitrary
ode to dynami
ally determined

lo
ations allow the
onstru
tion of
ompli
ated
ontrol
ow patterns in a stru
tured

way. In parti
ular, situations outside the normal purview of an algorithm, e.g.,

errors,
an be addressed
onsistently without obs
uring the real purpose of the

ode.

In C, abnormal
onditions are dealt with (or often not dealt with) by
he
king

spe
ial `error' values from fun
tion returns and/or global status
ags, or trapping

signals, possibly logging the error and terminating exe
ution more or less gra
efully.

Handling errors by
he
king the return
ode of a fun
tion has two disadvantages: the

error handling
ode gets intertwined with appli
ation
ode, de
reasing the readabil-

ity of both, and
he
king for an error
an qui
kly be
ome unmanageable, espe
ially

in a
ompli
ated fun
tion
all
hain.

Reliable software strives to work
orre
tly, or to determine that
orre
t operation

is impossible in a given situation. A me
hanism for appropriately dealing with

abnormal or ex
eptional situations must provide:

1. A
lean way to
an
el the exe
ution of the program fragment within whi
h

the situation arose.

2. Means of notifying an abnormal situation has o

urred, as well as
onsistent

and expressive ways to des
ribe it.

3. The possibility to mat
h to the situation spe
i�

ode that knows how to deal

with it.

4. The ability to spe
ify what
ourse of a
tion the program must follow on
e the

abnormal situation has been addressed.

Items 1 and 2 are independent of the
ontext: if a
ode fragment C is unable to

guarantee its
ontinuing
orre
t operation, the
orre
tness of any pie
e of
ode that

depends on C is immediately suspe
t. In this
ase, pro
eeding with the
omputation

is pointless and potentially dangerous, so it is better to
an
el the exe
ution of C,

and to release any intermediate allo
ated resour
es. Also regardless of the
ontext,

44

an ex
eptional situation has to be des
ribed
on
isely and
ompletely, at the level

of abstra
tion of the
ode that dete
ts it. By
ontrast, items 3 and 4 are
losely

related to the
ontext. For example, it is
on
eivable that two programs using the

same fun
tion may want to rea
t di�erently in the presen
e of the same abnormal

situation. If it is to be useful, a me
hanism to deal with abnormalities must be

exible.

An ex
eption handling me
hanism (EHM hereafter)
onstitutes a family of pro-

gramming language
onstru
ts that furnish the programmer with linguisti
 means

to address all the
on
erns outlined above. Despite reservations by a number of

prominent language designers (among whom are names of the
aliber of C.A.R.

Hoare [67℄ and Doug M
Ilroy

1

), most modern programming languages in
lude an

EHM. EHMs allow a
lear separation of the \usual" and ex
eptional
ontrol
ows,

and do away with the need of multiple testing for the same error and ad ho

ontrol

transfers.

Although EHMs have been proposed for a variety of runtime systems, this dis-

ussion assumes a pro
edural, non-obje
t-oriented, sequential language in whi
h

fun
tions' a
tivations are organized in a single sta
k (i.e., a C-like environment).

This sta
k is assumed to grow upwards, i.e., when a fun
tion invokes another, the

a
tivation of the se
ond fun
tion is assumed to be on top of the �rst. This
onven-

tion is also observed in the �gures that illustrate this
hapter.

Di�erent EHMs have been extensively studied, but there is no universally-

a

epted terminology. This work uses terminology from Buhr et al. [22℄. An

\ex
eption" is
hara
terized as an event that is an
illary to algorithmi
 exe
ution,

and whi
h is
omparatively infrequent. When a
ode fragment dete
ts the o

ur-

ren
e of su
h an event, it
an notify the rest of the system by raising or throwing an

ex
eption, whi
h is a data obje
t des
ribing the event. An EHM permits ex
eptions

to be stru
tured via parameterization and derivation, providing expressive means

to des
ribe ex
eptions a
ross orthogonal
on
erns. To address issue 3 above, EHMs

introdu
e the
on
ept of a guarded region with whi
h
ode spe
i�
 to the kind

1

M
Ilroy
laims that ex
eptions
ause a system to be less reliable, as programmers and library

writers throw ex
eptions rather than try to understand the problem, or even report it in a
on
ise

and
omplete manner [122℄.

45

of ex
eption is asso
iated, and organized in handlers. Blo
ks without asso
iated

handlers are
alled unguarded regions. What handler is a
tivated (or
at
hes the

ex
eption) in ea
h parti
ular raise is determined by the propagation model. When

one of the intervening handlers
ompletes su

essfully, the ex
eption is said to have

been handled, and the system pro
eeds a

ording to the EHM's transfer model,

whi
h
ould be termination or resumption.

In the following se
tion, the design spa
e of the
omponents of an EHM is

explored in some detail. With this ba
kground, C8's EHM design and implementa-

tion is des
ribed in the next se
tion. Finally, alternative de
isions to in
orporating

ex
eptions into C are brie
y reviewed as related work.

3.3.1 EHM design spa
e

Can
eling in
omplete operations

During propagation, multiple sta
k frames (a
tivation re
ords) may be terminated.

Ea
h sta
k frame
ontains a fun
tion's arguments and lo
al variables among other

data. All lo
al data must be
leanly deleted. Resour
es, like dynami
 memory, �le

des
riptors, so
ket des
riptors, et
., may have been a
quired during initialization

of lo
als or in the
ourse of the
ompleted part of a fun
tion, and it is ne
essary to

return them to the pool of available resour
es. EHMs usually guarantee the
orre
t

termination of automati
 data, and provide, either by themselves or in
onjun
tion

with other language features, a means to free manually allo
ated resour
es. Ex-

amples of EHM
onstru
ts that perform this servi
e are �nally
lauses in Java,

or unwind�prote
t spe
ial forms in S
heme [116℄ and Common Lisp. In C++, this

e�e
t
an be obtained by using a destru
tor for a
lass.

Des
ribing ex
eptions

The
orre
t des
ription of an abnormal situation is
ru
ial to the determination

of the a
tion to be taken in response. EHMs in languages like PL/I, Ada or Lisp

des
ribe abnormal situations by tags, strings or a system-wide numeri
 en
oding.

46

This approa
h is
learly not extensible, or even
onvenient in larger systems. An al-

ternative approa
h, taken by ML, is to des
ribe ex
eptions by ex
eption types. ML's

algebrai
 types (disjoint-tagged-unions) serve this purpose admirably. Furthermore,

having types des
ribe ex
eptions allows the programmer to pass additional stru
-

tured data along with the name of the ex
eption, giving raise to parameterized

ex
eptions. Sin
e ex
eption types and \
omputational" types are used for quite

di�erent purposes, they are usually kept separate from ea
h other [25℄. Languages

like C++, however, allow the programmer to throw obje
ts of any type, whi
h

onfuses this di�eren
e.

C++ and other obje
t-oriented programming languages further re�ne the \ex-

eptions are types" approa
h by organizing ex
eption types in hierar
hies and allow-

ing the propagation pro
ess (des
ribed below) to mat
h ex
eptions with handlers

for an
estor types. This feature is usually known as derived ex
eptions, and is

probably one of the
learest uses of inheritan
e as a
lassi�
ation devi
e in the

lassi
al sense [104℄. It is also one argument in support of multiple inheritan
e. It

is
ommon that ex
eption types form the deepest hierar
hies in
lass libraries for

languages like C++, Java or C#.

The ex
eptions a fun
tion potentially raises are an aspe
t of its behaviour. Fun
-

tion behaviour is usually en
oded in an interfa
e spe
i�
ation (also known as proto-

type in C/C++ or signature in Java), so it is natural to extend su
h spe
i�
ation to

in
lude ex
eptions, resulting in another feature
ommon in EHMs: ex
eption lists.

These lists are most noti
eable in Java. The ex
eptions a Java method
an raise are

enumerated after its parameter list

1

. Any
ode invoking a method so quali�ed must

either
at
h all the ex
eptions in the method's ex
eption list, or in
lude the ones

that go un
aught in its own ex
eption list. This allows the Java
ompiler to
he
k

for the
ompatibility of methods, and serves as do
umentation on the fun
tion's

operation. In pra
ti
e, however, most programmers feel that ex
eption lists violate

the prin
iple of information hiding,
ause more problems than they solve (Should

an overridden method throw the same ex
eptions as the method it overrides? If

1

This is only true for
he
ked ex
eptions (those that inherit from Ex
eption). Other kind of ex-

eptions, namely run-time ex
eptions (inheriting from RunTimeEx
eption) do not de
orate the

signature in this way.

47

the thrown ex
eptions are to vary, need they do so
ovariantly?), or overwhelm

programmers with details. This state of a�airs often results in ex
eption lists being

overly general, and ex
eption lists only
ontaining the supertype java.lang.Ex
eption

are
ommon. This pra
ti
e dis
ards whatever error-spe
i�
 data the ex
eption
ar-

ries and in so doing defeats the purpose of parameterized ex
eptions. Ex
eption

lists are also problemati
 in generi

ode, as the requirements on the fun
tions a

type provides must also list the ex
eptions those fun
tions potentially raise. As

stated above, ex
eptions are a
on
ern orthogonal to the notion a method, generi

or otherwise, implements. Having the ex
eption spe
i�
ation play su
h a prominent

rôle, for all its usefulness, is, in
ommonly used type systems, highly in
onvenient;

there seems to be no middle ground.

Guarded regions

Handlers that deal with spe
i�
 ex
eptions are asso
iated with guarded regions.

The granularity of a guarded region
an range from a subexpression [60℄ to blo
ks

of statements, and without loss of generality, most statement-oriented languages

use a
ompound statement. This design allows lexi
al nesting of guarded regions.

As the program runs, and
ontrol
ow pro
eeds through guarded regions, fun
-

tion invo
ations also
ause guarded regions to dynami
ally nest. Upon entering a

stati
ally or dynami
ally nested guarded region, the guarded region's handlers are

added to the list of available handlers. Similarly, when
ontrol
rosses the borders

of a guarded region on its way out, the handlers asso
iated with the region are

removed from the list of available handlers.

Propagation

As noted by item 4 on page 44, an EHM determines the
ontrol
ow the program

takes when an ex
eption is raised. This
ontrol
ow generally involves a

essing

one or more handlers, and, after the ex
eption is handled, transfers
ontrol to a

point where normal operation of the program
an
ontinue, or the program
an

safely terminate.

48

Complex
ontrol
ow patterns, espe
ially a
ross binding environments, are usu-

ally explained by des
ribing
ontrol transfers in terms of fun
tions. Jumps, for ex-

ample, are presented as fun
tions that never return, and ex
eptions are des
ribed

in terms of one-shot downward or upward
ontinuations [130℄. A dual approa
h,

taken in [22℄, de
omposes a fun
tion, inasmu
h as
ontrol transfers are
on
erned,

into two jumps, a
all and a return. If it is possible, by using the lexi
al stru
ture of

the program, to determine stati
ally, i.e., before the program is run, the symboli

address
ontrol transfers to by a jump (
all or return), the jump is quali�ed as

stati
. In
ontrast, if a parti
ular
ontrol path of the program is the basis for the

determination of jump targets, the jump is dynami
. The possible
ombinations of

stati
/dynami

all and return generate a taxonomy that is useful to
hara
terize

ex
eption propagation models. All four
ases are dis
ussed.

Call

Stati
 Dynami

Return

Dynami
 1 fun
tion
all 2 resumption

Stati
 3 sequel 4 termination

Table 3.1: Control Stru
ture Taxonomy

1. Normal fun
tion invo
ation in a lexi
ally-bound environment transfers
on-

trol to the address of a lexi
ally-visible fun
tion (stati

all). The
ode for

the fun
tion is exe
uted, and, upon
ompletion,
ontrol returns to the point

immediately after the point of invo
ation, whi
h
annot be known until the

ode is run (dynami
 return).

2. A fun
tion
all in a dynami
ally-bound language, e.g., Ema
s Lisp [96℄ trans-

fers
ontrol to the fun
tion de�nition that is
losest in the
all
hain to the

point of invo
ation, a lo
ation not determinable until runtime (dynami

all).

Similarly, dynami
 propagation models also rely on dynami

all (raise). Han-

dler sele
tion depends on the nested list of available handlers built at runtime,

allowing handlers to vary for ea
h fun
tion
all. The
ode of the sele
ted han-

dler is exe
uted, and, upon
ompletion,
ontrol returns after the raise point

(dynami
 return). This behaviour
onstitutes the resumption transfer model.

49

3. Tennent [129℄ proposed a
onstru
t,
alled a sequel, using stati

all, but

that returns to the point past the end of the lexi
al s
ope where it is de�ned

(stati
 return). Knudsen [80℄ built Beta's EHM around this
onstru
t, but

this design seems to have few proponents.

4. The most popular
ombination for EHM is dynami

all and stati
 return

be
ause of its
exibility. Handler sele
tion is done as des
ribed in item 2.

On
e the sele
ted handler has
ompleted,
ontrol
ontinues in the lexi
al

ontext after the guarded region asso
iated with the sele
ted handler. This

behaviour
onstitutes the termination transfer model.

Dynami

all is almost universally
onsidered the right design de
ision for an

EHM. However, the right
hoi
e between dynami
 or stati
 return (termination or

resumption) is less
lear. Sin
e they are not mutually ex
lusive, it is possible to

adopt both termination and resumption models in a programming language. Both

models are depi
ted in �gure 3.8. The
all sta
k is shown on the left, growing

upwards, where every blo
k denotes an a
tivation. If there are handlers asso
iated

with an a
tivation, they are shown on the right. The solid arrows
onne
ting a
tiva-

tions denote (normal)
ow of
ontrol. Upon the raise of an abnormal event (marked

\raise"), the propagation me
hanism sear
hes among the available handlers for one

that is appropriate to the raised ex
eption. This sear
h is denoted in the �gure by

the dashed line through the handlers on the right. In the situation depi
ted in the

�gure, there is no appropriate handler to the raised ex
eption among those asso
i-

ated with the tightest (lexi
ally- or dynami
ally-) en
losing guarded region, so the

propagation
ontinues among the handlers at the next guarded region. A mat
hing

handler is found among these (marked \
at
h"), so the handler
ode is exe
uted.

At some point in this pro
ess, the handler's
ode determines that the abnormality

is better addressed at a higher level, so it reraises the ex
eption (marked \reraise").

This
auses another round of propagation of the same ex
eption to begin, this time

among the handlers asso
iated one level out (noti
e that the dashed line does not

pass through the last available handler on the
urrent level), and not stop until an-

other appropriate handler is found two levels out (marked \
at
h"). This handler's

ode is run to
ompletion. At this time the ex
eption is
onsidered handled.

50

1. termination

2. resumption

guarded and handlers
propagation

catch

catch

raise

reraise

stack

unguarded regions

Figure 3.8: Ex
eption handling

51

The handler-
lause mat
hing usually pro
eeds in a

ordan
e to the rules already

in pla
e with respe
t to other aspe
ts of the language, e.g., type equivalen
e, or

the extended rules of argument-parameter mat
hing. These rules govern also the

possible ways the ex
eption
an be used in the body of the handler, e.g., what

operations
an be applied to the ex
eption obje
t. A
ommon extension to the

fun
tion invo
ation analogy in handlers allows for the provision of a default or

\
at
h-all" handler, that mat
hes any ex
eption.

What happens after the ex
eption is handled is determined by the poli
y in

whether the return lo
ation is stati
 or dynami
. The me
hanism
an
hoose a

sequel -like behaviour (as in Beta) and transfer to the end of the guarded region that

handled the ex
eption (point \1" in �gure 3.8), resulting in termination semanti
s.

Alternatively, if dynami
 return behaviour is
hosen,
ontrol is returns to the point

after the ex
eption was raised (point \2" in �gure 3.8), e�e
tively resuming the

operation within whi
h the ex
eption o

urred, resulting in resumption semanti
s.

Termination-versus-resumption is an ongoing debate in programming language

ir
les, with resumption most favored among the Xerox PARC-bred
ommunity

(Smalltalk, CLOS, Mesa/Cedar), and termination advo
ated among the C++ and

Java
amps. One model does not pre
lude the other, and it has been suggested

that they are
omplementary, and serve di�erent purposes, and address di�erent

on
erns. If the two models are to
oexist in a language, however,
lose attention

has to be paid to several issues. Foremost among these is when is the propagation

model for a parti
ular raise sele
ted. There are three possibilities:

1. As part of the ex
eption type (in the de
laration).

2. Indi
ated at the raise point.

3. Indi
ated at the handler.

En
oding propagation model preferen
es in the ex
eption type should be
exible

enough to provide for the
ase when the ex
eption is dual, i.e., when it is not spe
i�

to either me
hanism.

52

Regardless of what propagation model is
hosen, the
ombination of resumable

and terminating ex
eptions
alls for more sophisti
ated handler semanti
s, that reg-

ulate the
oupling or the propagation model spe
i�ed by the raised ex
eption and

the handler that is to deal with it. This
onsideration is part of the handler mat
h-

ing semanti
s, and is usually spe
i�ed by des
ribing the behaviour of the system

under all possible
ombinations of ex
eption/handler
hoi
e of propagation models.

Not all su
h
ombinations make sense. In parti
ular, it is impossible to mat
h a

terminating ex
eption with a resumption handler, sin
e by the time exe
ution is to

be resumed, the sta
k has been unwound. In general, unmat
hed ex
eption/handler

ombinations are problemati
, and the most
onservative semanti
s for these
ases

are usually safest.

The added
exibility of dynami
 propagation is not without drawba
ks. In par-

ti
ular, the
ase of an ex
eption going un
aught and es
aping to the runtime, due to

a la
k of an appropriate handler. Di�erent programming languages handle this
ase

di�erently. Some, like Java, try to determine stati
ally whether there is the possi-

bility of this happening in a parti
ular program, via powerful
ontrol-
ow analysis

at
ompile time. C++ provides a terminate() fun
tion hook for un
aught ex
ep-

tions, whose default behaviour is to abort the exe
ution of the program. Despite

this important failing, dynami
 propagation remains the most popular
hoi
e.

3.3.2 C8 Ex
eption Handling Model

In this se
tion, the syntax and semanti
s for the C8's EHM are presented, relying

on the ba
kground developed above. The C8 EHM in
ludes parameterized and

derived ex
eptions, as well as both resuming and terminating transfer models.

Des
ribing ex
eptions

In
ontrast with C++, where values of any type
an be used as ex
eptions, in C8,

the only type that
an be thrown is ex
eption, an alias for the type stru
t ex
eption,

de�ned in the runtime library. Derived ex
eptions are
onstru
ted from this type

via re
ord
omposition. That is, more spe
ialized ex
eption types are stru
ts that

53

in
lude an anonymous �eld of type ex
eption. This rule builds upon the impli
it

onversion rules in C8's stati
 type system (inspired by a similar extension in the

Plan-9 C
ompiler [99℄), whi
h introdu
es an impli
it
onversion from stru
t in-

stan
es to the type of an unnamed �eld:

typedef stru
t ex
eption f
har *msg; g ex
eption; /* runtime library */

stru
t io ex
eption f

ex
eption;

har *devi
e name;

g io ex
eption;

printf("Ex
eption: \%s", io ex
eption.msg); // impli
it
ast to ex
eption

This approa
h, taken re
ursively, permits forming ex
eption hierar
hies �a la obje
t-

oriented inheritan
e
hain, rooted on ex
eption. In this way, more organized ex
ep-

tion handling patterns and some reuse of handler
ode are possible.

Guarded regions

Like C++ and Java, guarded regions are
ompound statements pre�xed by the

keyword try. Inspired by Java, C8 in
ludes a �nally
lause that is exe
uted

regardless of how the try blo
k terminates. Every guarded region may have multiple

handlers asso
iated with it; ea
h handler
omprising a
ompound statement and

introdu
ed by one of the keywords resume or terminate. There is at most one

�nally
lause after the handlers:

htry statementi ::= `try' `f' hstatementsi `g' [hhandlersi+ ℄ [h�nally
lausei ℄

hhandlersi ::= [`terminate'j`resume'℄ `(' hex
eption spe
i ')' `f' h
at
h
lausei `g'

h�nally
lausei ::= `finally' `f' hstatementsi `g'

Noti
e that C8 follows the C++ approa
h for the s
ope of handlers and try

blo
ks. By requiring handlers to be asso
iated with blo
ks, the language syntax

54

e�e
tively prevents de
larations in try blo
ks from leaking into handlers. In par-

ti
ular, it prevents the problem of the handler referring to obje
ts that are nonex-

istent. Consider, for example, the
ase of a de
laration pla
ed after an expression

that raises an ex
eption.

The ex
eption spe
i�
ation is a C8 variable de
laration with
ertain restri
tions.

In parti
ular, sin
e C8 uses name equivalen
e for types, de
laring a new type in a

handler, e.g.:

try f

. . .

g terminate(stru
t new ex
eption f ex
eption; /* more �elds */ g e) f

. . .

g

introdu
es
ode that is e�e
tively unrea
hable. The
urrent implementation of the

C8 translator
ags this situation as invalid. It also makes sure that the
at
h-all

terminate(ex
eption) or its resume
ounterpart o

urs at the end of a handler

list.

Raising and propagating ex
eptions

An ex
eption
an be raised at arbitrary points in the program. The syntax for

raising (and re-raising) an ex
eption is:

hraise statementi ::= [`terminate' j `resume' ℄ [hexpressioni ℄ `;'

As
an be seen, the propagation model for a given ex
eption is set both at the

raise and handle points. En
oding the propagation model in the ex
eption type

involves modi�
ations to the type system (terminate
an only throw terminating

ex
eptions, et
.) and imposes �ner
ontrol over the \inheritan
e-as-
omposition"

me
hanism, for no expressive gain.

C8 has mat
hing semanti
s of handlers, that is, a handler has to mat
h the

ex
eption type, spe
i�ed in the handler
lause, and the propagation model, spe
i�ed

55

by the kind of raise/handler pair, for it to be sele
ted. A reraise must mat
h with

the propagation kind of the initial raise.

When there are no raised ex
eptions,
ontrol
ows through guarded regions,

ignoring handlers and exe
uting �nally
lauses. When an ex
eption is raised, the

propagation me
hanism sear
hes the guarded region for available handlers lexi
ally

from top-to-bottom for ea
h handler
lause, in the order of de�nition. The �rst han-

dler that mat
hes the raised ex
eption is the one sele
ted. Note that this strategy

means that a more general ex
eption spe
i�
ation
an shadow a more spe
i�
 one

o

urring later in the handler list, thereby rendering the latter handler e�e
tively

unrea
hable.

Upon handler sele
tion, the ex
eption parameter (the result for the expression of

the raise statement) is bound to the variable de
lared in the ex
eption spe
i�
ation

parameter.

Assume that the sele
ted handler runs to
ompletion, i.e., that no further ex-

eptions are raised or reraised during its exe
ution. For a resume handler
at
hing

a resumable ex
eption, the exe
ution state at the point of the raise is restored,

and exe
ution
ontinues at the statement after the one that issued the raise. For a

terminate handler
at
hing a terminating ex
eption, the exe
ution state between

the raise point and guarded region
ontaining the sele
ted handler is dis
arded, and

ontrol
ontinues after the guarded region, on
e the �nally
lauses of all dis
arded

guarded blo
ks are exe
uted.

If after the sta
k of available handlers is
ompletely examined an appropriate

handler is not found, the un
aught ex
eption fun
tion hook is invoked. The default

behaviour of un
aught ex
eption is to abort the exe
ution of the program, but a

programmer
an provide an alternative implementation. However, an alternative

implementation must eventually abort.

3.3.3 Implementation

There are two popular strategies for the implementation of a termination-based

ex
eption handling me
hanism. Christiansen [28℄
alls them dynami
 registration

56

and stati
 table. The stati
 table approa
h is only feasible when a

ess to the (ma-

hine)
ode-generation engine is possible, as knowledge of the addresses (symboli

or otherwise) of generated
ode is ne
essary. For a sour
e-to-sour
e translator, this

approa
h is
learly infeasible.

For my implementation of C8's EHM, I sele
ted the dynami
 registration method.

This approa
h
onsists of storing the state of the program

1

upon entry to a guarded

region in a LIFO list, or sta
k. The state information is stored in a re
ord that

also
ontains a
ag des
ribing the status of the propagation. A runtime library

fun
tion
reates and links re
ords onto a guarded-region sta
k. This fun
tion is

invoked upon entering a guarded region. Also, a guarded blo
k is translated into

a swit
h statement whose
ases re
e
t the
urrent status of the propagation, i.e.,

whether a handler is being sear
hed, or the �nally
lause is being exe
uted. The

handler
lauses are pla
ed in one of the
ases and the �nally
lause in the last.

If the guarded region's run is
ompleted normally, the re
ord is unlinked, and the

�nally
lause, if present, exe
uted.

When an ex
eption is raised, is top of the guarded-region sta
k is examined

for the next available group of handlers, i.e., the ones
orresponding to the
losest

dynami
ally en
losing guarded region. As pointed out above, C8 mat
hes handlers

to ex
eptions depending on the ex
eption type and then
on�rms the mat
h by

ensuring that the propagation model for the raise and handler spe
i�
ations are

the same. Runtime type mat
hing is performed using a runtime type des
riptor, or

RTTD

2

. For the C8 translator, the RTTD is a linked list of names,
ontaining the

name of its de
lared ex
eption type and a list of the ex
eption types it is derived

from (
fr x3.3.2) re
ursively. This representation permits the type mat
hing to take

the form of a linear sear
h over lists. The translator
onverts handler
lauses into

if
hains, preserving the order of handlers and guaranteeing that the �rst handler

that mat
hes is the one that is sele
ted.

If a handler is not found,
ontrol is transferred to the �nally
ode, if it exists.

1

Ad minimum: the values of the sta
k and frame pointers and the program
ounter.

2

Common RTTDs are strings
ontaining type names, perhaps after mangling. Full
edged, dynami

type identi�
ation (RTTI) s
hemas, like that of the GNOME GObje
t framework [128℄ are also

ommon.

57

If this
ode is run to
ompletion, the top re
ord on the guarded-region sta
k is

unlinked, and the pro
ess pro
eeds with the next re
ord. If a handler is found, its

ode runs. If this
ode is run to
ompletion,
ontrol is transferred to the �nally

lause, with the subsequent unlinking of the top re
ord on
e the �nally
ode is

done. The ex
eption then is handled, and the program pro
eeds at the level of the

at
hing guarded region.

The standard C library fun
tions for nonlo
al jumps, setjmp and longjmp pro-

vide for jumps downward in the
all sta
k, and automati
ally unwind the sta
k.

Thus, this fa
ility does not allow for the implementation of resumable ex
eptions.

More versatile, but less portable libraries that provide the ne
essary fun
tionality

are POSIX [69℄ user-level
ontext-swit
hing fun
tions

1

. In parti
ular, operating

systems like Windows and even several Unix variants like FreeBSD are la
king in

these fa
ilities. Even with
ompatibility among operating systems, the problem is

not
ompletely solved (for example, at the time of this writing Cygwin still did not

in
lude the u
ontext fun
tions). Using u
ontext fun
tions permits the storage of

the program state at the raise point of a resumable ex
eption, state that is restored

on
e the ex
eption is handled. As a result of these te
hni
al diÆ
ulties, resumption

is not implemented in the
urrent C8 translator.

The translated output for a program
ontaining terminating ex
eption handling

ode is presented in detail in �gure 3.9.

The implementation des
ribed above is not without problems, the most obvi-

ous of whi
h is performan
e. Ea
h try blo
k has to set up a new node in the

guarded-region sta
k. If no ex
eptions are thrown, but there is a �nally
lause

present, longjmp still has to be
alled, in
urring a performan
e hit. Furthermore,

the GNU implementation of the non-lo
al jump fa
ilities make extensive use of the

C++ runtime system, in parti
ular the ex
eption-handling support routines. Most

of the
ode in these support routines has to do with ensuring that all obje
ts with

a lo
al s
ope are destroyed (and their destru
tors invoked) when the
orresponding

s
ope is abandoned, whi
h is not needed for the purposes of C8 ex
eptions. Us-

1

Other possible
hoi
es in
lude the libunwind[5℄ library, that de�nes a portable API for
all-
hain

manipulation in C programs. At the time of this writing, it supports only Itanium and x86

ar
hite
tures, whi
h is not portable enough.

58

int foo() f

io ex
eption no�le;

st
py(no�le.msg, "No file found.");

terminate no�le;

g

//. . .

void bar() f

//. . .

tryf

//. . .

foo();

g terminate(io ex
eption ex) f

// handler 1

g terminate(ex
eption) f

// terminate any

g �nally f

lose(fd);

g

g

int foo() f

f

ex
obj.data = (void *)&x; // global obje
t

longjmp();

g

/* alternative exe
ution path */ return 0;

g

//. . .

void bar() f

f

gd region link link;

gd add
ontext(&link);

swit
h(setjmp(link.
tx)) f

ase 0: f

//prote
ted region of
ode, in
luding:

foo();

longjmp(link.
tx, INHANDLER);

g

ase INCODE:

// beginning of handlers

if(mat
h(ex
obj.data type, handler1.type)

& ex
obj.prop model == handler1.prop model)

// handler 1

io ex
eption ex
 = (io ex
eption)ex
obje
t.data;

// . . .

ex
obj.handled = true;

longjmp(link.
tx, INHANDLER);

g else

if(ex
obj.prop model == handler3.prop model)

f

//
at
h-all handler

ex
obj.handled = true;

longjmp(link.
tx, INHANDLER);

g

ase INHANDLER:

f

lose(fd);

gd remove
ontext(&link);

if (! ex
obj.handled)

longjmp(gd top
ontext(), INCODE);

g

g

Figure 3.9: Ex
eption handling translation.

59

ing
ompiler or library-spe
i�
 fa
ilities, su
h as GNU C's builtin setjmp() and

builtin longjmp() that limit their fun
tionality to basi

omputer state informa-

tion might signi�
antly alleviate the performan
e degradation.

Furthermore, there are
on
erns about the generated
ode. Global variables

are used to store the root of the guarded-region sta
k and the ex
eption data

obje
t, whi
h is almost always poor pra
ti
e, and immediately problemati
 when

on
urren
y is introdu
ed to the program.

3.4 Related work

The addition of
ontrol stru
tures to the C language has been the subje
t of many an

a
ademi
 and te
hni
al study. Most of them involve modi�
ations to the runtime

organization (for example, Budd added I
on-style generators [21℄, a work whi
h

involved substantial reorganization of the runtime sta
k).

Modi�
ations to the swit
h statement and the default fall-through behaviour

have also been o

asion of mu
h dis
ussion. Of these studies, it is worth singling

out Cy
lone [127℄, whi
h extends swit
h to handle values of any type and
ase

labels to spe
ify patterns, possibly quali�ed by guards, whi
h are predi
ates whose

truth is required for the pattern to mat
h, and the parti
ular
ase to be sele
ted.

Parti
ularly interesting is the fa
t that swit
h
onditions and
ase patterns in Cy-

lone may involve tuples. Cy
lone also forbids falling through non-empty
ases, and

introdu
es the keyword fallthru for the programmer to
on�rm that fall through

is the desired behaviour.

EHMs have been integrated into C in a great variety of forms. The dynami

registration method has been espe
ially popular in this task for it implies little or no

hanges to the
ompiler or runtime. The most
omplete des
ription of the dynami

registration method is by Cameron et al. [27℄, in the
ontext of C++. Examples

of this approa
h are the
ex
ept[34℄ library, that provides C++-like try,
at
h,

and throw
onstru
ts; and the real-time oriented RTF�les [111℄, that also in
ludes

�nally
lauses. Neither of these libraries permit resumption, or even mat
hing by

type, as ex
eptions are identi�ed by system-wide numeri

odes. Another exponent

60

of the dynami
 registration approa
h, also worthy of mention is Allman's [8℄, whi
h

uses string ex
eptions in
ombination with regular expression mat
hing at the han-

dlers for a
exible form of derived ex
eptions that does not involve inheritan
e or

inheritan
e-like me
hanisms.

For better performan
e, platform-spe
i�
 C extensions, like those known as

\Stru
tured Ex
eption Handling"[98℄ on Windows platforms
ould be generated.

At a lower level, if C is not to be generated, but an intermediate
ode is targeted,

Ramsey and Peyton-Jones's C{ [102℄ provides versatile ex
eption handling me
ha-

nisms, and is
oupled with a variety of ba
kend
ode generators. At an even lower

level, the most popular virtual ma
hines to date, Sun's JVM and Mi
rosoft's CIL

fa
ilitate the walking of the sta
k, whi
h allows for very
exible EHM implemen-

tations. At the ar
hite
ture level, very few platforms (e.g., SPARC and MIPS)

support the new generation of generi
 sta
k unwinders.

Alternative approa
hes to error handling for C, besides the ones mentioned at

the start of the se
tion, are basi
ally extensions to the status-
ag te
hnique. An

example of this is an approa
h used by most C-CORBA bindings [63℄,
onsists of

passing extra by-referen
e \environment" re
ords as arguments to fun
tions. The

programmer needs to
he
k the values the fun
tion has pla
ed in spe
i�
 �elds of this

re
ords to determine whether an error o

urred during the fun
tions' run. Although

this is perhaps the most appropriate way to
he
k for errors in a distributed
ontext,

it su�ers from the same weaknesses as the status-
ag methods.

61

Chapter 4

Tuples

The
on
ept of \subprogram" arose in the early days of
omputer programming.

In general, a subprogram is a named, self-
ontained, possibly parameterized, frag-

ment of
ode that performs some well-de�ned a
tion that is invokable from another

subprogram, to whi
h it may or may not return a value. The key point is that a

subprogram is independent of its
aller, therefore usable by any other subprogram

at any point in its
ode.

The subprogram is the most
ommon abstra
tion me
hanism in all programming

languages, and was present even in the �rst one, Fortran. Subprograms play a

pivotal rôle in the \stru
tured programming" s
hool of thought, and in software

engineering with respe
t to the notion of modularization. Today, virtually every

programming language supports the notion of a subprogram and all programmers

are taught about and use subprograms as a primary
oding me
hanism.

Under the
on
ept of subprograms, endless variations of the original theme
an

be found: arguments
an be passed to the
alled subprogram a

ording to a number

of poli
ies (as
opies, referen
es or a representation of their a
tual textual form),

argument lists
an be of any �xed or even of unspe
i�ed length, subprograms
an

dire
tly or indire
tly
all any other subprogram in
luding themselves ad in�nitum,

an be
alled asyn
hronously, or
alled on a di�erent
omputer, et
.

It is perhaps surprising that these numerous mutations, generated over the more

than 40 years of resear
h and use, have not wandered far in form and
on
ept from

63

the original notion of subprogram
all. The main
omponents of su
h a
all are

still
learly re
ognizable: a list of arguments passed to parameters, a
hange in

the
ontrol
ow from the
all to the subprogram, saving the ne
essary exe
ution

state so it
an be restored after the subprogram and those that it has
alled have

�nished; and, should it be ne
essary, the pla
ing of the result of the subprogram

omputation in a lo
ation where the
alling program
an a

ess it.

Exploring the design spa
e depi
ted above, KW-C [131℄, one of the dire
t fore-

runners of C8, in
luded output parameters, named return values, and other fea-

tures. Most notable among the extensions, it introdu
ed to C language the idea

of tuples. Tuples
apture in a limited way the notion of independent
omputa-

tions, and thus are more a data stru
turing me
hanism than a new built-in type;

tuples allow for a more
on
ise expression of several idioms in C that involve the

use of temporaries. These idioms in
lude multi-valued fun
tions, the manipulation

(pa
king and unpa
king) of
omposites, operations like the simultaneous sele
tion

of multiple members from re
ords, or initialization of the same, and various parallel

forms of assignment. Having tuples in the language establishes uniformity to all

su
h manipulations.

C8 relies on tuples to enhan
e the C8 language des
ribed by Dit
h�eld [47℄ and

Bilson [16℄ in mu
h the same way that KW-C does for C. To this end, I extended the

original C8 expression analysis algorithm to in
lude the e�e
ts of overloading and

type spe
ialization in tuple operations. Moreover, I generalized KW-C's notion of

a tuple to en
ompass designators, a feature that allows for very expressive fun
tion

omposition patterns. Other features that resulted from the extended expression

analysis phase are named parameters, default values for arguments, and named

return values. The des
ription of these modi�
ations, the features they sustain

and, more importantly, the resulting in
reased expressiveness of the language form

the substan
e of this
hapter.

4.1 Multi-valued Fun
tions

In the most general
ase, a subprogram a

epts arbitrary number of arguments of

arbitrary types and returns arbitrary number of values of arbitrary types. There are

64

a number of possible explanations for programming languages designers not giving

multiple value-returning (MVR) fun
tions the same importan
e (if any at all) as the

single-valued returning (SVR)
ounterpart. First there is the notation. Awkward

syntax is probably the �rst reason that dis
ourages designers from in
luding MVR

fun
tions in their language. Ideally, a MVR fun
tion should be synta
ti
ally as

similar as possible to a SVR fun
tion, that is, it should be possible to de
lare and

use an MVR in every
ontext where a traditional SVR fun
tion o

urs, spe
i�
ally:

returning values: It should be possible to store the values returning from a fun
-

tion into appropriate variables, and

omposition: It should be possible to use the values returned from a fun
tion as

arguments to another (provided they are type-
ompatible), without the need

of intervening temporaries.

Syntax meeting these requirements is not immediately obvious in most pro-

gramming languages. Parti
ularly problemati
 is the
omposition of MVRs. For

example, given a (
urried) fun
tion type as
ription, expressed as:

funf : Type

f;1

! Type

f;2

! : : : ! Type

f;n

fung : Type

g;1

! Type

g;2

! : : : ! Type

g;m

if Type

g;i

: : :Type

g;k

; i; k � m;m � n, mat
h Type

f;n�k

; : : :Type

f;n

, the fun
tions

f and g are
omposable, and their
omposition has the type as
ription:

f � g : Type

f;1

! Type

f;2

! : : :Type

g;m

If SVR-fun
tion
omposition is expressed in pre�x notation f(g(: : :)), it is
lear

from the denotation that the result of the innermost fun
tion is to be used as the

argument of the next fun
tion in the
hain. For MVR-fun
tions, however, it is not

so obvious what results are to be bound with what parameters. An in�x 'apply'

operator solves the problem:

65

(Value

Type

1

;Value

Type

2

; : : :Value

Type

n

)appfappg (4.1)

This form of notation is so appealing in this parti
ular
ase that even otherwise

algebrai
ally-inspired languages, su
h as Beta [87℄ adopt it (the proposed app op-

erator is written => in Beta). The fun
tion takes two below takes two parameters,

alled input parameters

1

, whi
h are assigned (left-to-right) from the variables y and

z as arguments:

y,z => takes two

The MVR fun
tion gives two returns two results. Fun
tion
omposition is then

performed as follows:

gives two => takes two

This syntax allows the fun
tion
omposition in formula 4.1 (for n = 2) to be

expressed as:

val1,val2 => f => g

Beta's
hoi
e of notation
ertainly looks familiar to programmers of the Unix

shell s
ripting languages, whi
h rely heavily on program
omposition, and where

ommuni
ation takes pla
e ex
lusively with text streams. Conne
ting the output of

a program to the input of another (the app operator above) is done using a `pipe'

hara
ter (j). Raoult and Sethi [103℄ propose in
orporating the pipe notation into

a
ompiled programming language.

A se
ond synta
ti
al alternative, post�x notation, makes
omposition of multiple-

value returning fun
tions unfettered in sta
k-based languages, where the symmetry

between multiple arguments and multiple return values has been
ommonpla
e.

Consider the Forth version of the running example:

1

also part of KW-C.

66

: \gives_two 2 3 ;

: \takes_two {a b} ... ;

\gives_two \takes_two .

The �rst two lines de�ne the fun
tions (\words" in Forth terminology) ngives two

and ntakes two. The �rst one pushes the values 1 and 2 onto the sta
k. The fun
-

tion ntakes two pops two values from the sta
k and pla
es them in the variables

a and b. The last line is an expression
omposing both fun
tions.

For languages using a pre�x fun
tion appli
ation operator things be
ome more

diÆ
ult. Most languages in this
ategory have been unsu

essful in a
hieving nearly

as natural a form as those outlined above and have to resort to alternative syntax

(as Beta did). Consider, for example, S
heme, whi
h, as of the last revision of

its standard [76℄, in
ludes MVR fun
tions. However, fun
tions returning multiple

values have to follow a parti
ular interfa
e, namely, generating a group of variables

with the spe
ial form values, and
alling a fun
tion upon an expression generating

multiple values with the form
all�with�values, whi
h takes a
losure with no pa-

rameters as a produ
er, and a se
ond
losure, the
onsumer, whi
h is
alled with

the values generated by the produ
er as arguments. Although
ertain optimizations

that elide the use and overhead of these
losures are possible [12℄,
alls to MVR

fun
tions do not resemble appli
ations of a SVR fun
tion. They look awkward in

even simple
ases, su
h as when using a re
ursive de�nition:

(de�ne partition

; `partition' takes a list and a predi
ate, and returns the list of all the

; elements of the original that
omply with the predi
ate, and the list

; of all the elements whi
h do not.

(lambda (l p)

(if (null? l)

(lambda () (values '() '()))

(
all�with�values (partition (
dr l) p)

(lambda (lyes lno)

(if (p (
ar l))

(lambda () (values (
ons (
ar l) lyes) lno))

(lambda () (values lyes (
ons (
ar l) lno)))))))))

67

John M
Carthy was among the �rst language designers to re
ognize the impor-

tan
e of MVR fun
tions, and urged the ameri
an delegation in the Algol design

ommittee to in
lude this fa
ility in Algol 60, and made it part of even the �rst

in
arnations of Lisp. Later, Friedman and Wise [55℄ extended Lisp to in
orporate

easier-to-use re
ursive MVR fun
tions (a fa
ility that is almost as expressive as

C8's). It is not surprising then, that later in
arnations of Lisp, in parti
ular ANSI

Common Lisp ([61℄), with its emphasis on pure fun
tional programming style, frown

upon the use of `out' parameters and provides a spe
ial fa
ility for the manipula-

tion of MVR fun
tions. Any fun
tion
an return multiple results that are bound

via spe
ial forms and ma
ros: values returns its arguments (without intervening

stru
turing), multiple�value�bind names these values on the re
eiving end. This

approa
h in
reases readability, but fun
tion
omposition is still awkward:

(labels ((gives�two () (values 2 3)))

(multiple�value�bind (x y) (gives�two) (takes�two x y)))

The formmultiple�value�bind binds the two values returned by gives�two via values

to the names x and y. multiple�value�bind is but one of the spe
i�
 forms of

destru
turing�bind, whi
h mat
hes more stru
tured (nested) lists. On
e the vari-

ables are bound, they
an be used as arguments to
all takes�two.

Other Lisp-inspired languages, even with more algebrai
 syntax also make use

of a similar interfa
e for dealing with multiple values from a fun
tion. For example,

Dylan [113℄, a hybrid between S
heme and CLOS
omes
loser to the obje
tives

stated above. It also makes use of the values spe
ial form, but reuses the lo
al

assignment form let to make use of the values returning from a fun
tion.

de�ne method gives�two ()

=> (a :: <number>, b :: <number>);

values(2, 3);

end method

.

.

.

let (x, y) = gives�two();

takes�two(x,y);

68

For Algol derivatives other forms have been proposed. Languages like Xerox's

Mesa [91℄ and its su

essor, Cedar, treat fun
tions as if both parameter and return

values lists were re
ord stru
tures. When assigning the result (or rather, the
on-

tainer for the result), any variable whose stru
ture mat
hes the one returned by

the fun
tion is type-
ompatible.

gives two: pro
edure returns [a,b:integer℄ =

begin

return [a:2, b:3℄;

end;

.

.

.

[x, y ℄ = gives two[℄ ;

takes two[x,y℄;

This interpretation of parameters and return value lists as re
ords is used to some

extent in C8(see page 81).

Other languages that provide for multiple-value returns are C's forerunner,

BCPL [105℄, Alphard [114℄ and CLU [88℄. While all the algebrai
 languages above

deal with returning multiple values, none addresses the issue of fun
tion
omposi-

tion of MVR fun
tions
onsistently with their SVR
ounterparts.

Sin
e all these in
arnations of the me
hanism are unappealing or do not inte-

grate well with the rest of the language (e.g., in
onsisten
ies between single- and

multiple-value returning fun
tions), alternate solutions to returning more than one

value from a fun
tion are usually preferred. The e�e
t of returning multiple values

from a fun
tion
an be simulated to some extent by a
ombination of other pro-

gramming language
onstru
ts (aggregate or `out' parameters

1

) or by resorting to

programming
onventions, like rewriting a program in
ontinuation-passing style.

These workarounds
arry their own set of diÆ
ulties.

1

`Out' parameters
an be used to trigger optimizations, for example, by returning multiple results in

registers (as it happens in languages like Ada, Sather and Mer
ury). If unavailable in a parti
ular

language, the e�e
t of 'out' parameters
an be approximated by passing extra arguments by

referen
e.

69

Passing aggregates ba
k and forth has the in
onvenien
e of requiring
umber-

some and error-prone pa
king and unpa
king. Output arguments and passing pa-

rameters by referen
e require additional notions su
h as variables, addresses, as-

signments, nonlo
al side e�e
ts, aliasing, et
, that pla
e a
onsiderable burden on

the programmer.

Furthermore, any of these approa
hes involves the use of temporary variables

whose sole purpose is to immediately transfer the results from one fun
tion to

another. This use of variables is undesirable from a number of standpoints. Firstly,

it in
reases the data
omplexity of the fun
tion
all that makes use of su
h a pra
ti
e.

Data
omplexity is a measure of the amount of data pro
essed by a subprogram,

and it is re
e
ted, among other
riteria, in the the number of variables de
lared

therein [32℄. Se
ondly, it multiplies the pla
es that require
hange should any

of the fun
tions involved
hange its interfa
e

1

. Lastly, for languages like (pre-

C99) C, all variables must be de
lared at the beginning of a blo
k, whi
h
an

be substantially separated from the point where the fun
tion
all is made (unless

\spurious" blo
ks are introdu
ed by the programmer, an unsatisfa
tory solution),

inhibiting readability and maintainability. Languages like C99, C++ and Java

alleviate this situation by allowing the de
laration of variables to be interspersed

with the statements but the variable
ount is still arti�
ially (and awkwardly)

in
reased.

Continuation-passing style (CPS), and later the CPS-transform was �rst intro-

du
ed by Fis
her and Plotkin [53, 100℄ and extended by Harper et al. [65℄ to the

typed
ase. It does not involve the use of temporaries, but entails its own set of dif-

�
ulties. In its original form, CPS makes use of a rei�ed form of the program state,

alled a
ontinuation. A
ontinuation is a fun
tion that represents the \rest of the

program", i.e., the
omputation that is to take pla
e on
e the
urrent
omputation

is done, and to whi
h the result of the
urrent
omputation potentially
ontributes.

Roughly des
ribed, CPS involves passing a
allba
k, representing the
ontinuation,

to every fun
tion. At the end of its
omputation, and instead of returning a value

1

In the best of
ases the temporary and the new interfa
e would be in
ompatible, so an error is

dete
ted by the
ompiler. However, it is more likely that an impli
it
onversion and potential

information loss would take pla
e, leading to hard-to-�nd bugs.

70

to its
aller, the
alled fun
tion invokes the
allba
k on the values it is to return.

For the running example, the use of these te
hnique looks like:

void takes two(int a, int b, . . .);

.

.

.

void CPS gives two(void (*
allba
k)()) f

int ret1;

double ret2;

.

.

.

(*
allba
k)(ret1, ret2);

g

.

.

.

CPS gives two(takes two);

This method transforms the problem of returning multiple values to the a

epting

of multiple arguments, and thus avoids the
reation of temporaries. However it

requires a
omplete restru
turing of the
ode, not always possible in a separate-

ompilation setting.

In any
ase, all the approa
hes des
ribed in the pre
eding paragraphs hide the

fa
t that what the programmer wants to express is the
omposition of fun
tions.

4.1.1 Importan
e of MVR fun
tions

MVR fun
tions make the
ode amenable to various optimizing transformations.

In parti
ular, sin
e the returned values are independent of ea
h other, and are

passed unpa
ked, they
ould be passed ba
k in registers rather than using the sta
k,

providing some speedup. Also, using more information on how the returned values

are going to be used (as arguments to a fun
tion, or assigned to new variables)

would
on
eivably allow for
loser, more eÆ
ient
aller/
allee intera
tion.

However, performan
e in
rease is not the stated goal of in
luding MVR fun
-

tions in the C8 language. Even if there were no performan
e gains as a dire
t

onsequen
e of this feature, the semanti
 gains alone are important for the pro-

71

grammers developing or maintaining the
ode. If nothing else, the
lear synta
ti

distin
tion between input and output arguments at the
all site is helpful to the

understanding of the intent of the
ode. To further illustrate this point, take for

example the following fragment whi
h invokes fun
tion foo:

foo(i1,i2,&o1,&o2);

It is un
lear from this line whether the output arguments have to
ontain a sensible

value to the fun
tion when it is invoked, or if this value is modi�ed (if \transparent"

pass-by-referen
e is possible, like in C++). These issues do not o

ur if the above

ode is stated as:

[o1,o2℄ = foo(i1,i2);

as it is plain now that the intent of o1 and o2 is to re
eive the values returned by

a su

essful
all to foo, and that these assignments do not intera
t with whatever

happens during the evaluation of the right-hand-side. Also, it is now
lear that i1

and i2 are not modi�ed during the assignment or the evaluation of the right-hand-

side (unless the language allows transparent pass-by-referen
e).

These are all useful fa
ts that
an be extra
ted dire
tly from the syntax by

the reader of the program, and the notation a

ounts ni
ely for one of the two

possible usages of the values returned by MVR fun
tions, as the right-hand-side of

an assignment. This notation, �rst introdu
ed to the C language in [26℄, requires

the introdu
tion of a new
onstru
t, a tuple. Tuples also �t in with the se
ond

usage of values from MVR fun
tions, fun
tion
omposition.

The rest of the
hapter des
ribes in great detail the way tuples are in
luded in

C8. It is organized as follows: a des
ription of tuples and the operations on them is

presented in the next se
tion. The implementation of these operators is des
ribed

next. Finally, additional notes on related work are brie
y outlined.

72

4.2 C8 Tuples

Re
ognizing the advantage of having MVR fun
tions in C8, its designers strived to

�nd the abstra
tion that best in
luded this feature and integrate it as seamlessly

as possible in the overall fabri
 of the language. They found it in one of the most

innovative aspe
ts of its forerunner, KW-C.

KW-C [131℄ in
ludes an abstra
tion of argument lists, a programming language

devi
e that is so
ommonpla
e that it is not often
onsidered a
onstru
t in its own

right, but a mere byprodu
t of the fun
tion
all syntax. The rationale for identifying

argument lists with tuples originally was that fun
tions are often
alled with the

same arguments, so giving the list a name made it easier on the programmer,

and generated a possible
ompiler optimization. C8's tuples soon trans
ended its

originally intended purpose by allowing the expression of a number of di�erent

on
epts.

Tuples are ordered, �xed-size lists of possibly non-
ontiguous, heterogeneous

elements. Su
h lists should be familiar to most programmers, as they appear in a

number of
ontexts in imperative and fun
tional languages: parameter and argu-

ment lists, array subs
ripting, �elds of re
ords, et
. In all these situations, tuples

an be
onsidered as a stru
turing devi
e rather than the spe
i�
ation of a family

of types. C8 tuples and their
on
omitant programming
onstru
ts
onstitute a

natural representation for several often-used programming devi
es and provide a

powerful way of expressing programming ideas.

In C8, the syntax of tuples is given by the grammar:

htuple expressioni ::= '[' htuple expressioni [',' h tuple expression i℄* '℄'

j '[' hassignment expression i? [',' hassignment expressioni? ℄+ '℄'

Square bra
kets, [℄, allow di�erentiating between tuples and expressions
ontaining

the C
omma operator. Examples of tuples are (assuming the fun
tion appli
ation

73

expressions
ontained therein return a single value):

[4, f() ℄ // 2 values

[7, (f(), g()) ℄ // 2 values,
omma operator

[x + y, , 'a' ℄ // 2 values, hole

[int, double, int ℄ // 3 types

['a', ['b','
'℄, 'd' ℄ // 4 values, nested tuple

Tuples
an be arbitrarily nested. Not all forms of tuples are legal in all
ontexts

where tuples are allowed, e.g., tuples with holes.

Tuples in KW-C, and therefore in C8 are in
uen
ed by the set-based language

SETL [45℄

1

, whi
h a

ounts for the sharp di�eren
e between this
onstru
t and

onstru
ts of the same name present in other programming languages, like ML,

Python or Haskell. In parti
ular, the individual elements in a C8 tuple are not

dire
tly addressable, neither by name nor index nor o�set (further exposing their

potential non-
ontiguous nature). As well, a C8 tuple does not model a sequen
e,

so it is impossible to
y
le through the
ontents of a tuple. Essentially, a C8 tuple is

largely a
ompile-time phenomenon, having little or no runtime presen
e. Therefore,

it is wrong to equate C8 tuples with tuples in other languages be
ause the purposes

of ea
h are
ompletely di�erent. C8 has di�erent fa
ilities and me
hanisms to
reate

the kinds of entities
alled tuples in other languages.

Tuples are not �rst
lass values in C8. Their stru
ture is also less stri
t than that

of re
ords, e.g., nested tuples are impli
itly
attened. When passed to a fun
tion,

tuples are impli
itly opened to a

ess their
omponents, whi
h are subsequently

paired with the
orresponding arguments, and when returned from fun
tions a

similar operation takes pla
e. Fun
tions do not return \a tuple of. . . ", but multiple

values of the
orresponding types. The only ex
eption is when tuples are used

in
ontexts that require types, spe
i�
ally in de
larations (when de
laring tuple

variables). Tuples are best understood as a synta
ti
al devi
e, a shorthand notation

that is expanded at
ompile-time, and that has little or no run-time manifestation.

As su
h, their use does not enfor
e a parti
ular memory layout, and in parti
ular,

1

SETL
ombines features suitable for symboli
 programming with an imperative syntax and se-

manti
s.

74

does not guarantee that the
omponents of a tuple o

upy a
ontiguous region of

memory. Some operations that are
ommon to values, su
h as querying for the

address are disallowed for tuples. Another
onsequen
e is that fun
tions on tuples

annot be de�ned. Finally, a user
annot extend the built-in tuple operation set

(des
ribed below). Essentially, tuples are used as a
ompile-time devi
e to organize

information.

4.2.1 Tuple Assignment

The stru
ture of tuples is
uid. Although tuples are permitted to nest, they are

immediately
attened when used, and their
ontents are impli
itly extra
ted when

required. In parti
ular, in an assignment operation between tuples, i.e., an as-

signment that
ontains a tuple expression in its left-hand side, both operands to

the assignment are impli
itly
attened, and tuple variables are expanded to their

de�nition. The
omponents of both sides are then paired and individual \s
alar"

assignments are performed.

Holes in tuples introdu
e a more textured mat
hing dis
ipline, whi
h is des
ribed

below, but in general, tuple mat
hing takes pla
e between two
at lists of values.

On
e an assignment is performed, the left-hand side is
on
eptually restru
tured if

required.

4.2.2 Multiple Assignment

Multiple assignment is the straightforward extension of simple assignment to tuples

of the same size. It
onsists of a tuple of lvalues being assigned a tuple of expressions,

taking the form:

[lvalue

1

; lvalue

2

; :::; lvalue

n

℄ = [expr

1

; expr

2

; :::expr

n

℄

The left-hand side is a tuple of lvalues, whi
h is a list of expressions ea
h yielding an

address, i.e., any data obje
t that
an appear on the left-hand side of a
onventional

assignment statement. Ea
h expr appearing on the right-hand side of a multiple

75

assignment statement is any standard arithmeti
 expression and its value is assigned

to the
orresponding lvalue on the left-hand side of the statement. Clearly, the

types of the entities being assigned must be type
ompatible with the value of the

expression.

The multiple assignment
onstru
t has parallel semanti
s, whi
h permits a

\swap" of the
ontents of variables to be written as:

[x,y℄ = [y,x℄

(as in the
ase of argument lists,
are must be taken when using side-e�e
t expres-

sions inside a tuple, sin
e no parti
ular order of evaluation is guaranteed by either

C or C8).

A spe
ial form of pattern mat
hing takes pla
e when \holes" appear in the

left-hand tuple of the assignment operator:

[int x, int y, int z℄ foo();

[ret, , ℄ = foo(); // ignore last two values

[a,,
℄ = [x,y,z℄ // ignore middle value

In both assignments, the rvalues in positions
orresponding to the holes are ignored

by the rest of the
omputation (and performed only for side e�e
ts).

If a fun
tion returns lvalues, holes
an appear on the right-hand side of an

assignment, as in:

[lvalue int x, lvalue int y, lvalue int z℄ bar();

bar() = [v1, , v3℄;

whi
h results in the value asso
iated with the se
ond address remaining un
hanged,

while the results of the expressions v1 and v3 are assigned into the address spe
i�ed

by the �rst and third return values of the fun
tion bar. Note the keyword lvalue,

a C8-spe
i�
 extension for a restri
ted pointer on whi
h it is impossible to perform

arithmeti
 and that is impli
itly derefen
ed. lvalues are similar to C++ referen
es.

76

Mass Assignment

A
onvenient simpli�
ation of multiple assignment in C8 is to assign a single value

to a number of di�erent variables, an operation
alled mass assignment, whi
h has

the form:

[lvalue

1

; lvalue

2

:::lvalue

n

℄ = expr;

where for all lvalue

i

provide the address of an obje
t that is type-
ompatible with

the type of expr.

As for multiple assignment, mass assignment uses parallel semanti
s, whi
h

means assignment is not equivalent to either C
ode fragments:

lvalue 1 = expr;

lvalue 2 = expr;

.

.

.

lvalue n = expr;

or

lvalue 1 = lvalue 2 = . . . = lvalue n = expr;

The �rst fragment
auses multiple evaluations of expr, whi
h is, at the very least

ineÆ
ient, and at worst, wrong, when an expr has side-e�e
ts. In the se
ond
ode

fragment, the value of expr is repeatedly
asted into the types of lvalue n, lvalue (n�

1) and so on, whi
h
an
ause loss of information along the way.

Parallel assignment semanti
s, ensures expr is only evaluated on
e, pre
luding

side-e�e
t problems, and this value is assigned to ea
h of the lvalues so that only

the minimum type
asting takes pla
e between lvalue i and expr.

4.2.3 MVR fun
tions in C8

The introdu
tion of tuples to C8 permits the spe
i�
ation of fun
tions returning

multiple values that are
onsistent with SVR fun
tions and,
onsequently, user's

77

expe
tations. The result is a natural extension of C's syntax and style:

[int, int, int℄ gives3(int);

[x, y, z℄ = gives3(x);

Here, gives3 returns three values, whi
h are assigned left to right into variables x, y

and z. Or, if
omposing gives3 with another fun
tion:

takes3(gives3(w));

where the multiple values generated by gives3 be
ome the arguments of takes3.

A MVR fun
tion de
laration may or may not asso
iate names with the
ompo-

nents of the return tuple:

[int, int, int℄ foo() f . . . g // unnamed return values

[int x, int y, int z℄ foo() f . . . g // named return values

In the se
ond form, the return-tuple
omponent names be
ome lo
al variables in

the fun
tion just like parameter names. This form introdu
es a similar fa
ility to

the short-lived g

 \named return values" extension

1

. There are several ways a

MVR fun
tion
an return a result:

[int x, int y, int z℄ foo() f

[int, int, int℄ temp;

//
ase 1:

return temp; // use of a tuple variable,

//
ase 2:

return [3,4,5℄; // return ``tuple literal''

//
ase 3:

[x, y, z ℄ = [3,4,5℄;

if(x == 4) return;

// ``fall-o�'' the fun
tion (impli
it return)

g

1

Mi
hael Tiemann, with help from Doug Lea, provided named return values in g++,
ir
a 1989

[86℄.

78

Cases 1 and 2 dire
tly return a tuple value. Case 3 indire
tly returns a tuple value

through the named tuple variables, i.e., a return; or fall-o� the end of a fun
tion

is rewritten to return [x,y,z℄;. The named
ase
an help the
ompiler to optimize

out unne
essary
opying of temporaries from the fun
tion to the
all site.

It
an be seen that Mesa's (x4.1) design has been highly in
uential in this

language extension.

4.2.4 Named parameters

Syntax imposes signi�
an
e in the ordering of the parameters in a fun
tion that is

not always warranted. This ordering has to be respe
ted when
alling the fun
tion.

However, when using library fun
tions,
oming from a variety of sour
es, there is

no hope for a universally respe
ted
onvention regarding the order of arguments.

Changing an interfa
e is not always possible or even desirable, so a method of

pla
ing the sour
es of the parameters in the right position in the fun
tion
all is

required. This issue
ompromises the
exibility of fun
tion
omposition.

Re
ognizing this fa
t, C8 in
ludes keyword parameters. Keyword parameters

[64℄ introdu
e an alternative ordering to the traditional by-position in parameter

lists, by also adopting indexing by name, thereby rendering argument lists isomor-

phi
 under permutations. They also provide a dual for the named return values of

an MVR fun
tion. That is, keywords
an be used in an argument list to dire
tly

onne
t arguments to parameters, whi
h is espe
ially useful to rearrange tuples

returned from an MVR fun
tion
alled as an argument. In C8, having di�erent

names for parameters or return values in a fun
tion de
laration (as a prototype)

and later in its de�nition is
onsidered an error.

Named parameters have been a part of programming languages sin
e the early

days of programming languages. Parameters are usually a

essible by name within

the fun
tion body

1

, but, in most programming languages, not from the point of

invo
ation. It is often in
onvenient for a programmer to remember the order of a

1

Although admittedly primitive programming environments like most Unix shells or the T

E

X type-

setting environments use the position of a parameter to refer to it.

79

fun
tion's arguments, and a

idental transpositions are not dete
ted by the
om-

piler,
ausing hard-to-�nd bugs. For a reader of the same
ode, things are not
lear

either, even when there is appropriate do
umentation or programming
onventions

that use (possibly temporary) variables named after the
orresponding parameters,

or that make
lear what the purpose of the argument is.

Clearly in many
ontexts the order of parameters is either highly
onventional

(as for geometri

oordinate systems) or immaterial (a fun
tion that is intension-

ally equivalent under a permutation of its arguments, as is the
ase, for example,

with a binary
ommutative operator). In C8, fun
tions
an be
alled with a mix-

ture of positional and named arguments. While named keywords alone in
rease

the expressiveness of a programming language, they are parti
ularly useful when

ombined with other features, parti
ularly default parameters, and
omposing MVR

fun
tions. Consider the following examples:

1 [int, int℄ foo();

2 void bar(int a, int b, int
);

3

4 bar(foo(), 3);

5 bar(3,foo());

6 bar([
,a℄:foo(), b:3);

7 bar([a,℄:foo(),2,3);

8 bar([,a℄:foo(), 2,3);

In lines 4 and 5 above, the values being returned by fun
tion foo are mat
hed with

the arguments of bar based on their positions, in the usual fashion. However, it is

unlikely that the writer of an MVR fun
tion knows the order the returned values are

going to be required by other fun
tions in a program. A designated tuple makes this

knowledge unne
essary, as the order in whi
h these arguments are to be mat
hed

with the parameters of the re
eiving fun
tion is expli
itly spe
i�ed. For example,

in line 6 above, the results of foo are paired with arguments
 and a respe
tively,

whereas argument b is given by the integer 3. Furthermore, not every value from

the MVR needs to be used. Any returned value
an be dis
arded by the
alling

80

fun
tion, as illustrated by the last two lines in the example. In line 7, the �rst value

from foo is paired with a, while the se
ond is ignored; in line 8 the exa
t reverse is

done.

Default values for parameters have been in
luded in a great variety of program-

ming languages. C8 adopts C++ syntax for this fa
ility, so default parameters

follow ea
h parameter's de
laration in a fun
tion de
laration, e.g.,

int foo(int x = 10,
har ab
 = 'a');

Also adopting a widespread
onvention, C8 requires all parameters that do not take

default values (also known as positional parameters) to be listed �rst, followed by

the ones with default values.

Te
hni
ally, overloading and default parameters are redundant, sin
e it is possi-

ble to a
hieve the e�e
t of default parameters ex
lusively by means of overloading.

This, however, requires a fun
tion de
laration for ea
h possible form of
all, result-

ing in linear growth. As well, overloading
annot handle default arguments in the

middle of a positional list, via a missing argument, su
h as:

p(1,/* default */,5);

The pattern-mat
hing taking pla
e between the fun
tion
all and the fun
tion

parameter list results in a rewritten
all (and several assignment to temporaries),

this time undesignated, that a
hieves the same e�e
t. In brief, the mat
hing pro
ess

takes pla
e by �rst
onstru
ting an ordered list of the parameter names of a fun
tion,

and maintaining a pointer to the last bound parameter (initially, the �rst of the list).

Upon an undesignated referen
e, the pointer moves forward to the next unbound

parameter, whi
h is then bound to the argument. When en
ountering a designated

referen
e, the
orresponding argument is bound, but the pointer does not move. At

the end of the argument list, all unbound parameters take their value from their

defaults if they exist. The \holes" in argument lists are mat
hed positionally to

the parameter list.

These pattern mat
hing rules
an be more formally des
ribed in terms of the

81

well-known relational algebra operators proje
tion (�), renaming(�),
ross produ
t

(�) and a nontraditional join (1) [42℄. Under this interpretation, a fun
tion
all

is treated as a re
ord operation. Ea
h fun
tion
all in the argument list is repre-

sented by its name, and it stands for its return value, whi
h is always a (possibly

one-) tuple; also, the argument-list
omma delimiter stands for the
ross produ
t

(
on
atenation) of tuples. The �rst step, the possible �ltering of some of the val-

ues returned from a fun
tion,
an now be expressed as a proje
tion based on the

position of the values in the return tuple. Furthermore, the rearrangement of argu-

ments
an be per
eived now as a renaming followed by a (non-standard) join. For

example, given the fun
tion de
larations:

foo(int a,int b);

[int,int,int℄ bar();

the relational algebra formulation of the fun
tion
all foo([,b,a℄: bar()) is:

foo 1

C8

�

b;a

(�

2;3

(bar))

where the se
ond and third results from bar are sele
ted (via the proje
tion �

2;3

),

then renamed to b and a respe
tively (�

b;a

), and �nally joined (1, for C8's inter-

pretation of a join) to the parameter list of foo.

It is easily noti
ed that the operation represented here as a join is not the

traditional relational-algebra natural join, although its similarity is
onspi
uous.

These rules for mat
hing arguments to parameters in fun
tion
alls are also

used to mat
h initializers to �elds when initializing aggregates, with two di�er-

en
es: the pointer always points to the last �eld initialized, whether designated or

undesignated. Furthermore, a member
an be referen
ed in an initializer list multi-

ple times, either via designation or by being indi
ated by the
urrent �eld pointer.

Only the last value paired with the member takes e�e
t. For fun
tion
alls, re-

peated referen
es to the same parameter via designation are
onsidered errors. All

these related operations are illustrated in �gure 4.1.

If it so happens that after rearrangement the
all still mat
hes more that one

fun
tion due to overloaded symbols, the minimum
onversion
ost [16℄ rule is used

82

foo = (a; b;
);

bar = (b;
; d);

foo 1 bar = (b;
)

(a) Natural Join

foo = (a; b;
);

bar = (b;
; d);

foo 1

left

bar = (a; b;
)

(b) Left Join

stru
t f int a, b,
 g re
 = f b:3,4; g; // funitialized, 4,3g

(
) Re
ord Initialization

int foo(int a, int b, int
 = 10);

foo(b:3,4); // foo(4,3,10);

(d) Argument list rearrengement

Figure 4.1: Name driven mat
hing

to disambiguate the
all. Essentially, this rule
hooses the option that entails

the least number of intermediate
onversion (safe and unsafe) and spe
ialization

operations.

All these fa
ilities together allows for a
lean des
ription of
ertain algorithms.

For example,
onsider a fun
tion that takes a string and returns a permutation

of it, \pivoted" around the
enter, that is, for the word "overhang" it returns

"hangover", for the word "overturn" it returns "turnover", et
. A C8 implemen-

tation of su
h a fun
tion, in terms of two auxiliary fun
tions, split and
on
atenate

(a multi-valued version of the Standard C library's str
at) is:

[
har *s1,
har *s2℄ split(
har *s);

har *
on
atenate(
har *s1,
har *s2);

har *mirror(
har *s) f

return
onatenate([s2,s1℄: split(s));

g

83

4.2.5 Re
ords and Tuples

Re
ords (stru
ts in C parlan
e) are another instan
e of an ordering relationship

unwittingly introdu
ed by the language, this time among the �elds. Sin
e �eld se-

le
tion in stru
t instan
es is done in terms of names, the existen
e of this position-

based ordering is not really an issue, ex
ept for initializers, where the (textual)

layout of the stru
ture has to be mimi
ked by the initializing expression. C99 re
-

ognized this fa
t and introdu
ed designated initialization (for stru
ts and unions),

where ea
h initializing expression is quali�ed with the name of the �eld it applies

to. For example:

stru
t point f

double x,y;

int
olor;

g

stru
t point p1 = f
olor=RED, 3.0, 4.0 g;

C8 adopts this innovation with a slightly modi�ed syntax (the assignment sym-

bol is repla
ed by a
olon), and naturally extends the de�nition of designators to

in
lude name tuples. For example, an instan
e of the type stru
t point in the above

example:

stru
t point p
fa = f
olor: RED, [y,x℄:3.0 g

Tuple assignment and fun
tion
alls
an also be used when sele
ting multiple

�elds of a stru
ture, sin
e C8 allows the �eld sele
tion operator to take a name

84

tuple to refer to multiple members of a stru
t instan
e:

stru
t st f

int x,y;

double z;

g s1, *s2;

s1.[x,y℄ = [2,3℄; // multiple assignment

s2�>[y,x℄ = 5; // mass assignment

4.3 Implementation

Till [131℄ implemented a �rst-approximation of most of the operations des
ribed

above (barring MVR fun
tion
omposition) for KW-C, an extension of the C pro-

gramming language. The C8 language, as des
ribed in [16℄ enri
hes the C language

with parametri
 polymorphism and overloading, and the type resolution algorithm

a

ounts for MVR fun
tions. However, this work did not in
lude tuples and their

extended assignment forms, nor did it a

ount for the
ode generation of this forms

or MVR fun
tions. The remainder of this se
tion �lls in these gaps. First, exten-

sions to the type resolution algorithm mentioned above are des
ribed to a

ount

for various
onstru
ts resulting from the introdu
tion of tuples. Finally, the
ode

generation algorithm for these forms is presented.

4.3.1 Tuple expression analysis

Traditional overload resolution algorithms rely on the
orresponden
e of the num-

ber and position of arguments in a fun
tion
all with the number and position

of the formals in a fun
tion de�nition. The not-so-traditional Baker-Dit
h�eld-

Bilson[16℄ overload resolution algorithm also
onsider fun
tions returning multiple

values, but still assume positional
orresponden
e. When named parameters are

thrown into the mix, this assumption must be dis
arded, and further generalization

of the algorithm is needed.

85

C8's overload resolution algorithm re
eives an untyped expression tree and it

returns a typed tree, where ea
h of the fun
tion
alls therein resolved to a unique

fun
tion in the program. The whole expression tree is then uniquely interpreted.

This resolution pro
ess takes into a

ount not only the number and type of the

arguments to the fun
tions, but the types of the returned values as well. It also

a

ounts for fun
tions returning multiple values and C's impli
it type
onversions.

A full a

ount of the algorithm is given by Bilson [16℄. SuÆ
e it to say here that

it works in a bottom-up fashion, keeping tra
k of every possible interpretation

for ea
h subexpressions and pi
king from among them on
e information on the

ontext be
omes available. A
onversion-
ost-based tie-breaking s
heme is used to

disambiguate
alls. For tuples, this poli
y
hanges somewhat. The assignment that

is �nally performed is the narrowest type that applies to all the tuple's
omponents.

This poli
y ensures that expressions are evaluated only on
e, but may result in

di�erent e�e
ts than the pairwise ma
ro-expansion interpretation. In fa
t, it might

be the
ase that a tuple assignment is termed \invalid" by the system, even if the

pair-wise expanded form has a valid interpretation. Consider, for example, the
ase:

double foo();

int *foo();

double d;

int *pi;

d = foo(); pi = foo(); // �ne, 2
alls

[d, pi ℄ = foo(); // invalid assignment (no narrowest type), 1
all

4.3.2 Tuple
ode generation

Multiple assignment

On
e expressions have been mat
hed on both sides of an assignment, temporaries

are generated for ea
h pair of left- and right-hand values. The former
onsist

of variables of pointer type that take the address of the left-hand operands of

the assignments, whereas the latter store the value of the right-hand operands.

Although this strategy might seem like a super
uous generation of temporaries, it

86

is ne
essary to ensure that expressions on either side are evaluated only on
e. The

result
an be seen in �gures 4.2 and 4.3.

Mass assignment

A temporary is generated for the right hand side, and as many temporaries as are

required for the left hand side. This allows the right-hand-side expression to be

exe
uted only on
e (with the
orresponding side e�e
ts exe
uted only on
e). The

result is illustrated in �gures 4.4 and 4.5.

MVR fun
tions

As outlined in se
tion 4.1, there are several options for the simulation of the e�e
t

of MVR fun
tions in C

1

. Consider the C8 program:

[int, int℄ divmod(int q, int d)

f

return [q div d, q % d ℄;

g

void display pair(int, int);

display pair(divmod(a,b)); // use

A �rst approa
h is based on pa
king and unpa
king of stru
tures, whi
h is the

1

There are even more than the ones illustrated here. For example, the use of
oroutines, whi
h

generates
ode too
omplex and ineÆ
ient to be seriously
onsidered.

87

[i,y[i℄,z℄ = [a + b,i,3℄;

(a) C8 version

f

int * tpl lhs 4;

int tpl rhs 5;

int * tpl lhs 2;

int tpl rhs 3;

int * tpl lhs 0;

int tpl rhs 1;

(tpl lhs 0=(& i i));

(tpl rhs 1=(a i+ b i));

(tpl lhs 2=(& y A0i[((long int) i i)℄));

(tpl rhs 3= i i);

(tpl lhs 4=(& z i));

(tpl rhs 5=3);

((* tpl lhs 0)= tpl rhs 1);

((* tpl lhs 2)= tpl rhs 3);

((* tpl lhs 4)= tpl rhs 5);

g

(b) C translation

Figure 4.2: Code generation for a multiple assignment statement

[x,y℄ = [y,x℄;

(a) C8 version

f

int * tpl lhs 2;

int tpl rhs 3;

int * tpl lhs 0;

int tpl rhs 1;

(tpl lhs 0=(& x i));

(tpl rhs 1= y i);

(tpl lhs 2=(& y i));

(tpl rhs 3= x i);

((* tpl lhs 0)= tpl rhs 1);

((* tpl lhs 2)= tpl rhs 3);

g

(b) C translation

Figure 4.3: Code generation for \swap" statement

88

[i,y[i℄,z℄ = foo();

(a) C8 version

f

int * tpl lhs 4;

int * tpl lhs 2;

int * tpl lhs 0;

int tpl rhs;

(tpl lhs 0=(& i i));

(tpl rhs= foo Fi ());

(tpl lhs 2=(& y A0i[((long int) i i)℄));

(tpl lhs 4=(& z i));

((* tpl lhs 0)= tpl rhs);

((* tpl lhs 2)= tpl rhs);

((* tpl lhs 4)= tpl rhs);

g

(b) C translation

Figure 4.4: Generated
ode for a mass assignment statement

[x,y℄ = a + b;

(a) C8 version

f

int * tpl lhs 2;

int * tpl lhs 0;

int tpl rhs 1;

(tpl rhs 1=(a i+ b i));

(tpl lhs 0=(& x i));

(tpl lhs 2=(& y i));

((* tpl lhs 0)= tpl rhs 1);

((* tpl lhs 2)= tpl rhs 1);

g

(b) C translation

Figure 4.5: Generated
ode for a mass assignment statement

89

te
hnique KW-C adopted in its translator:

stru
t divmod Ret f int x; int y; g divmod(int q, int d)f

stru
t divmod Ret ret;

ret.x = q + d;

ret.y = q * d;

return ret;

g

/* use */

stru
t divmod Ret re
 = divmod(a, b);

display pair(re
.x, re
.y);

CPS, as des
ribed above,
ould also be used. Any of these approa
hes would

pro�t by additional information at the
all and within the fun
tion, namely how

many and/or whi
h return values are a
tually used at the
all site. Su
h information

an be utilized to optimize the
all, sin
e the
allee need not
ompute unused results.

Sin
e C's arguments are unmoded, and
an be aliases of one another, an optimizer

for these expressions is non-trivial.

The
urrent in
arnation of the C8 translator rewrites MVR fun
tions to take ex-

tra by-referen
e arguments. It also rewrites every return statement in the fun
tion

body.

[int a, int b ℄ gives two();

gives two();

[x,y℄ = gives two();

90

generates:

void gives two(int *a, int *b);

f

* tup x = &x;

* tup y = &y;

gives two(tup x, tup y);

g

The
ase of
omposition with tuple designation is more interesting. This pro
ess

takes pla
e in stages:
on
eptually, an auxiliary multiple assignment statement is

generated, taking into a

ount all the potential rearrangement of arguments. The

following C8
ode

void takes two(int a, int b);

takes two([b,a℄:gives two());

is transformed, in stages, to:

[t1, t2℄ = gives two()

takes two(t2, t1);

and then (C)
ode for it is emitted as output, generating the following:

f

f

* temp t1 = & t1;

* temp t2 = & t2;

gives two(temp t1, temp t2);

g

/* rearrange arguments */

takes two(t2, t1);

g

91

4.4 Related work

Jaakko J�arvi's tuple library [72℄ (now part of the boost [19℄ library suite) makes

use of the template fa
ilities in C++ and the so-
alled type lists [7℄ to add MVR

fun
tions to C++.

Matrix-manipulation languages like APL and Matlab allow for a wide range of

modi�
ation of the form of its argument list via ve
tor multipli
ation and matrix

transposition. These operations, however, are not generalizable to heterogeneous

lists.

Rearrangement of argument subexpressions via designators is a
onsequen
e of

having keyword or named parameters in the language. It is surprising that, given

the formal similarity of this fa
ility with re
ords, features of this nature have not

been more widely studied. Two extensions to the �-
al
ulus that take into a

ount

re
ord-like fun
tion
alls and modify the substitution rules a

ordingly are Garrigue

et al. \label-sele
tive" �-
al
ulus [59℄ and Laurent Dami's �-N
al
ulus [41℄. The

latter is espe
ially interesting as it uses designated argument lists as the basis for

a re
ord- and obje
t-
al
uli for general software
omposition.

Similar behaviour to C8's designated
all
an be a
hieved, in a mu
h limited

form, in Haskell via the library fun
tions
urry, un
urry and, in parti
ular
ip,

whi
h is a
ombinator that returns a fun
tion with its two arguments reversed.

These fa
ilities rely on the presen
e of
losures,
urrying, and partial appli
ation

(sli
es) in the language. Although these features make it possible for (positional)

argument rearrangement to be written as a library, the library approa
h does not

s
ale to handle tuples of greater length. It is worth pointing out that, in
ontrast

with C8's approa
h, Haskell modi�es the fun
tion to be applied (
ip returns a

fun
tion) rather than the argument list.

Languages that use similar fun
tion-modifying me
hanisms, like Lisp, S
heme,

and, most notably, Dylan ma
ros
an also be used to a
hieve fun
tionality similar

to C8's designated
alls, in the same sense that the Haskell approa
h does. If a

non-standard Lisp with re
e
tive extensions is used, modi�
ation of the argument

list is possible. Su
h an approa
h, however, is likely to introdu
e a sublanguage for

hara
terizing the rearrangement similar to C8's name tuples. Either way, these

92

options require the presen
e of a very powerful and deeply embedded ma
ropro
es-

sor.

The C++ and Haskell approa
hes are inherently limited by having to hard-

ode the length of the tuple. This is derived from limitations inherent to their

type systems. More powerful type systems, that in
lude dependent types [141℄

are needed. Currently, there are very few languages that in
lude this fa
ility. An

example is Lennart Augustsson's Haskell-inspired Cayenne [13℄. Cayenne allows

the user to write fun
tions over tuples of any length (the most
ommon example is

an n-ary zip fun
tion). Tuple rearrangement, however, requires more
ompli
ated

annotations on the tuple than just the length.

93

Chapter 5

Attributes

A program is often per
eived as the des
ription of a pro
ess in terms of a
ompu-

tational model. This view fo
uses on the programmer dire
ting a
omputer to the

solution of a problem. Higher-level programming languages enable a more expres-

sive des
ription of a solution, but also add
ontent to the program, and parti
ipants

in the intera
tion. A program
an now be viewed as a message, whose
ontent is

more than just a
omputational me
hanism.

For example, there are fragments in the program text that are dire
ted to pro-

grammers rather than the
omputer, su
h as
onst, a

ess quali�ers and other

annotations, e.g.,
omments and variable names, that indi
ate how obje
ts in the

program are meant to be used. Naming
onventions often make up for features

missing in a language. For example, to address the la
k of modules, identi�ers in

C are often pre�xed with a library name; also, type variables in C++ STL
ode

are named after the
on
ept they model [58, 14℄ in an attempt to
ompensate for

a la
k of features to
onstrain generi
 types, like C8's
ontexts or Haskell's type

lasses. La
k of
ontexts or type
lasses (and fun
tional dependen
ies [75℄) also

for
es programmers to express relationships using naming
onventions, like that

between type int and its minimum and maximum values by identi�ers INT MAX,

INT MIN. In fa
t, it seems that
arefully named identi�ers are often used when-

ever a relationship between an obje
t and other parts of the program
annot be

expressed by linguisti
 means.

95

Other program fragments address the implementation of the
omputational

model, dire
ting the pro
ess of
ode generation, aiding the linking phase, or en-

abling the generation of runtime
he
ks by manipulating a host of options and

features, often in the form of \pragmati

omments" or pragmas. Pragmas are

often given spe
ial syntax in the language, but this is not always the
ase. For ex-

ample, C's type quali�ers register or inline are truly pragmas, sin
e they supply

information to the
ode generation me
hanism. Having a non-ad ho
 syntax for at-

tributes allows for
learly-marked dire
t-
ommuni
ation between the programmer

and the
ompiler. It also provides a uni�ed interfa
e to this kind of
ommuni
ation.

Some
ompilers, like g

 extend the language to allow for ri
her pragma syntax in

the form of attributes, whi
h interfa
e with the
ompilation/optimization pro
ess.

The programmer
an annotate only
ertain obje
ts (fun
tions, variables or types),

whi
h are
alled targets, with attributes. g

 attributes
annot be extended and

only dire
t the
ompiler's translation.

However, it is possible to generalize attributes further. Ada, for example, uses

attributes to
ommuni
ate information both to and from the translation system and

the programmer. In Ada, targets of attributes in
lude program units (modules),

labels, types, et
. Attributes
ontain information about targets su
h as string

representation, version, low-level representation details (e.g., size and alignment

of types), and relationships between entities, e.g., the base type of an a

ess or

onstrained type. The list of attributes, although large, is �xed and determined

by the language spe
i�
ation [71℄. Compiler implementors may extend it, but not

appli
ation programmers. Despite this limitation, programmers are allowed some

degree of
exibility, sin
e they
an override the behaviour of
ertain attributes,

spe
i�
ally marked in the standard as spe
i�able, as long as the attribute's interfa
e

is respe
ted, i.e., its target, extra parameters and return type.

Languages des
ending from Ada, like VHDL (VHSIC Hardware Des
ription

Language), generalize this rule by allowing programmers to de
lare their own at-

tributes thereby providing a more general
ode annotation me
hanism. Targets,

however, are a restri
ted and �xed set of entities in the language. Attributes in

Ada and VHDL
an be queried for their value by an attribute expression, whi
h

onsists of a referen
e to the target suÆxed with the attribute name and extra

96

parameters, if needed. Ada attributes provide a hook for extensibility in related

development tools, like
ompilation managers and
ompilers, whi
h take advantage

of the attribute syntax to enable enhan
ed
ommuni
ation with the programmer.

Code annotation is also provided in C#, with a me
hanism also
alled attributes.

C# attributes are patterned after those in the DCOM and CORBA interfa
ing

me
hanisms. As in VHDL, attributes
an be extended (user-de�ned attributes are

known as
ustom attributes). The attributes prede�ned by the language furnish the

programmer with the possibility to
on�gure a great number of
ode generation fea-

tures that are hard
oded in most programming languages, e.g., marshalling poli
ies

for distributed
ommuni
ation, memory layout, et
. Targets of attributes in
lude

all stati
 language
onstru
ts. At runtime, targets
an be queried for the value of

their asso
iated attribute values, whi
h are stored is a spe
ial \metadata" table.

C# attributes are extensively used by
ompilers, validation tools and exe
ution

environments.

Viewing the program as a message, and having multiple interested re
ipients

(
ompiler, development tools, runtime), it is fair to ask whether programmers
ould

pro�t from programmati
 a

ess to the sour
e
ode, annotated or otherwise. Pro-

grams that
an a

ess their own sour
e
ode have long been thought of as mere

uriosities (e.g., the so-
alled quines, programs that print their own listing). How-

ever, metaprogramming, i.e., the ability to manipulate sour
e
ode as data
oupled

with a means to automati
ally generate
ode, allows for extremely generi

ode

that is
ustomized at
ompile- or even run-time to great gain in adaptability and

performan
e. Metaprograms, or programs that spe
ify how other programs should

be generated, are the subje
t of study in the �eld of Generative Programming [40℄.

As a side e�e
t, when a program
an a

ess its own sour
e
ode, an additional

me
hanism to query
ode annotations is redu
ed.

When a

ess to some aspe
t of the sour
e
ode is required by a programmer,

it is
ommon to resort to a hand-dupli
ated version of the program fragment (e.g.,

C++'s \smart enumerations" [126℄ expe
t the programmer to provide the enumer-

ation
onstants twi
e: one in the enum and another as a string), or to
ir
uitously

dedu
e it from the program (e.g., the type traits C++ template library takes ad-

vantage of the Turing-
ompleteness of the template instantiation me
hanism to �nd

97

out type properties by observing the e�e
ts of the overloading resolution pro
ess).

Both these solutions involve either tedious and error-prone programming pra
ti
es,

very detailed low-level knowledge of the inner workings of a language me
hanism

or
ompiler, or, in the
ase of C++ template metaprogramming te
hniques, the use

of a very powerful me
hanism for other purpose than it was intended. It should

be possible for the language to allow these problems to be expressed dire
tly, given

that the information is already available within the program text or the
ompiler's

symbol table. Furthermore, the
ompiler is privy to information about the exe
u-

tion environment of a program. A

ess to this information
an signi�
antly add to

the
exibility and adaptability of a program.

A me
hanism that provides a uni�ed a

ess to the sour
e
ode and
ertain as-

pe
ts of the exe
ution environment is that of re
e
tion, whi
h is des
ribed in the

following se
tion. Re
e
tion is not the only way to enri
h program entities with

annotations a

essible programmati
ally, and some of the alternatives are dis
ussed

in the following se
tion, in parti
ular with regards to types. C8's attribute me
ha-

nism is then presented,
onsisting of a
ombination of already in-pla
e me
hanisms

like overloading and new attribute me
hanisms. Finally, some related work is men-

tioned.

5.1 Re
e
tion

The original meaning of
omputational re
e
tion is the ability of a program to

inspe
t and manipulate itself at the sour
e-
ode level. Mainstream programming

languages that in
orporate this
on
ept, like C# and Java, extend the s
ope of

the re
e
tion me
hanism to in
lude the program state and its exe
ution environ-

ment. This se
tion
on
entrates on the aspe
t of re
e
tion that relates to program

ode. Program-
ode re
e
tion usually involves two operations: rei�
ation, whi
h

translates program fragments to data, and spli
ing, whi
h does the reverse.

Full re
e
tion is an ambitious goal, and few programming languages provide

it. However, even a limited set of re
e
tive features is useful. Rei�
ation
ould

be limited to
ertain kinds of language
onstru
ts, as
ould be the operations on

98

these representations, or the form in whi
h they are spli
ed ba
k onto the running

program. Depending on the operations allowed over
ode-fragment representations,

a
lassi�
ation of re
e
tive systems is possible [44℄. If the rei�ed data is available

only for querying, the system is said to provide introspe
tion; if write a

ess to

the representation is allowed, the system has linguisti
 or stru
tural re
e
tion; and

�nally, if an updatable program representation in
ludes aspe
ts of the semanti
s

of the programming language, e.g., evaluation order of arguments, the system has

behavioural or
omputational re
e
tion. In systems with linguisti
 or
omputational

re
e
tion, a rei�ed program representation
an be modi�ed and spli
ed into the

running program, allowing for the possibility of run-time
ode generation. However,

this possibility is not
onsidered further in this work.

Computational re
e
tion was �rst introdu
ed in the
ontext of Lisp [117℄, a

language whose uniform representation of
ode and data makes the problem of

rei�
ation/spli
ing that of (quasi)quoting/evaluating. Other languages with similar

uniformity, like Prolog, soon started bene�tting from metaprogramming te
hniques,

and it has be
ome part of the Prolog lore to modify the usual sear
h strategy, im-

plement explainers or debuggers, and similar appli
ations by repla
ing the standard

evaluation fun
tion using \meta
ir
ular interpreters".

Interpreted, dynami
ally-typed programming languages
an bene�t from re
e
-

tion very naturally, sin
e they
an en
apsulate the interpreter itself as a fun
tion

taking a string argument
ontaining a
ode fragment and interpret it. Results and

e�e
ts (e.g., new obje
t
reation)
ontained in the
ode fragment
an all be read-

ily in
orporated into the running pro
ess. Interpreted, obje
t-oriented dynami

languages take a more systemati
 approa
h to program representation. Usually, a

language-provided framework, known as a metaobje
t proto
ol (MOP) [79℄, pro-

vides an obje
t-oriented interfa
e to the inner workings of the runtime and program

representation. Through the MOP obje
ts, the program
an be queried, navigated

and manipulated. The resulting
exibility of this design a

ounts for mu
h of the

adaptability of programs written in languages like CLOS or Smalltalk.

In stati
ally-typed languages, the problem of re
e
tion is more
ompli
ated, and

only re
ently the �rst
omplete implementation of a meta
ir
ular interpreter for a

Turing-
omplete, stati
ally-typed language was presented by L�aufer and Odersky

99

[85℄. Due to the
urrent prominen
e of appli
ations that require se
urity, adapt-

ability, persisten
e, and a host of other
hara
teristi
s that re
e
tion enables, mu
h

interest in re
e
tion for stati
ally-typed programming languages has arisen (see, for

example, Stemple et al. [120℄).

Perhaps the most
omplete interfa
e to the state of the exe
ution and program

representation in a stati
ally-typed language is that of the SML diale
t of ML.

The SML of New Jersey intera
tive
ompiler provides metaprogramming and sep-

arate
ompilation by externalizing various internal
ompiler representations and

pro
esses to make them available to ML programs, a te
hnique rendering a visible

implementation of the
ompiler and supporting runtime libraries [11℄. Although not

everything in a ML program
an be manipulated, the available externalized entities

oupled with
ode annotations have been suÆ
ient to enable interesting appli
a-

tions, su
h as the Sour
eGroup library [109℄, that plays the rôle of make in a C/Unix

environment, Blume's foreign fun
tion interfa
e [18℄, or Tolma
h's debugger [132℄,

whi
h works by automati
ally instrumenting sour
e-
ode and provides traditional

breakpoint/wat
h me
hanisms, reverse exe
ution,
he
kpointing and replay.

However, this sort of uniform interfa
e and powerful intera
tion with the state of

the program is very rare. Currently, most mainstream stati
ally-typed languages

like Java or C# in
lude a limited, yet useful set of re
e
tive features. In this

work, I fo
us on the introspe
tion aspe
t of re
e
tion,
omprising the ability to

programmati
ally examine (not modify) various program obje
ts, espe
ially types.

Code that take advantage of this ability is robust to
hanges in the de�nition of

types.

5.2 Introspe
tion

As mentioned above, introspe
tion is the read-only a

ess to the program repre-

sentation. A minimal set of introspe
tive
apabilities are usually in
luded in most

languages. For example, introspe
tive features have been part of C sin
e its in-

100

eption, via the C prepro
essor

1

. Programmers have programmati
 a

ess to the

urrent �le name and line number via the FILE and LINE ma
ros respe
-

tively. Aspe
ts of the
ompilation environment
an also be
aptured from the value

of environmental ma
ros, su
h as STDC , a boolean that determines whether

the
ompiler is Standard-C
ompliant, or DATE , that provides the system's

date. Due to the nature of the C prepro
essor,
ertain information is not a

essible

through ma
ros. In parti
ular, the prepro
essor is blind to fun
tion names and any

s
ope
onsiderations, whi
h for
ed the C99 standard to extend the introspe
tive

information in a di�erent way by introdu
ing the prede�ned identi�er fun
 ,

whi
h is de
lared impli
itly (if used) within a fun
tion as:

stati

onst
har fun
 [℄ = "fun
tion-name";

where fun
tion-name is the name of the fun
tion the identi�er is used in.

Other introspe
tive information the C
ompiler makes available is a

essible

through a somewhat in
onsistent and dis
onne
ted interfa
e,
onsisting of the oper-

ators address-of (&), sizeof and o�setof , and alignof , typeof , and address-

of-label (&&) as g

 extensions. A

ess to the environment is also done in C via

operating-system
alls.

Introspe
tion of types is parti
ularly useful, as it allows programmati
 a

ess

to stru
tural properties that are important for transmission or manipulation of

data in the program. The only information C dis
loses on a type is lower-level

representation information, via sizeof , o�setof , et
. In C++, better introspe
tion

fa
ilities
an be built via
onventions and abstra
tion me
hanisms, whi
h allow for

the
ompile-time annotation of types.

A C++ idiom, known as trait
lasses [95℄, is used to annotate types at
ompile

time. A trait
lass is a
ompile-time devi
e that permits the annotation of a type

with information su
h as asso
iated values and types. A trait is a template
lass

that en
odes values and types asso
iated with its type parameter. This idiom relies

on partial template spe
ialization, whi
h permits the template
reator to spe
ify a

1

These
apabilities
onstitute one of the reasons why the C prepro
essor is so diÆ
ult to eradi
ate,

despite its myriad detra
tors.

101

template <typename T> stru
t my type traits f

stati
 string get string() f return "unknown"; g

g;

template <typename T> stru
t my type traits<T *> f

stati
 string get string() f

return "pointer to " + my type traits<T>::get stringrep();

g

g;

template <> stru
t my type traits<int> f

stati
 string get string() f return "int"; g

g;

err << my type traits<int>::get string() << endl; // \int"

err << my type traits<int *>::get string() << endl; // \pointer to int"

err << my type traits<
har *>::get string() << endl;// \pointer to unknown"

Figure 5.1: Example of C++ trait
lasses

\primary template" for general types, more spe
ialized versions for types of
ertain

stru
ture and
ompletely spe
ialized versions for spe
i�
 types. With this me
ha-

nism, C++ provides a minimal pattern language, based on type
onstru
tors (not

to be
onfused with
lass
onstru
tors). An example of a trait
lass is shown in

�gure 5.1.

There are several libraries that en
apsulate information about a type in trait

lasses. Among these, the best known is type traits by Maddo
k et al. [89℄. The

information
ontained in these
lasses in
ludes inheritan
e details (e.g., whether a

lass is derived from a parti
ular base
lass), and type ordering (whether there is an

impli
it
onversion from a type to another). Providing this information as a library

has the advantages that no language or
ompiler modi�
ations are ne
essary, and

that extensibility is guaranteed. However, the information a

essible in this way is

limited. Proposals for linguisti
 support for type information have been submitted

to the C++ Standardization Committee [121℄, as have proposals for more general

ompile-time re
e
tion fa
ilities [134, 73℄.

102

For programmati
ally-a

essible annotation of program entities, types, in par-

ti
ular a C programmer must resort to the
reation of a runtime type system, like

that of the GNOME GObje
t library [128℄, a framework that provides aspe
ts of

the C type system at runtime. In parti
ular, ea
h (registered) type in the system is

uniquely identi�ed by a number, whi
h then allows for the asso
iation of arbitrary

information via a di
tionary.

C++'s runtime type information (RTTI) fa
ility allows for the annotation of

types, both built-in and user-de�ned [123℄. The
ompiler generates some informa-

tion per type (in
luding a string representation of the type name and a suitable

equality test between type data-obje
ts) and stores it in instan
es of
lass type info,

whi
h are (read-) a

essible via the fun
tion typeid. typeid takes the name of a type

or an expression, and returns the
orresponding type info obje
t. The design of

type info allows for extending type information, e.g., by building di
tionaries in-

dexed by type name. This form of introspe
tion, although useful, is limited. For

example, an instan
e of a
lass
annot be queried at runtime for its publi
 methods.

Compared to C and Ada, Java in
ludes powerful introspe
tion
apabilities, that

allow for the easy development of meta-language fa
ilities su
h as
lass browsers

and intera
tive program generators. More interestingly, they provide for obje
t

serialization in the form of a library, where serialization is the pro
ess of writing

or reading an obje
t to or from a persistent storage medium, su
h as a disk �le.

5.3 C8 attributes

Be
ause C8 is based on C, it
an use C's previously mentioned me
hanisms to a

ess

information about a program and its exe
ution environment. Interestingly, C's ad

ho
 introspe
tion me
hanism for types (e.g., INT MAX)
an be better expressed

through C8's powerful type system by using programming idioms and
onventions.

This solution, however, does not apply to all introspe
tion needs. To provide for

these additional needs, I have designed and implemented a new me
hanism, inspired

by Ada attributes that integrates well into the existing syntax and semanti
s of

C8. This me
hanism uni�es several ad ho
 me
hanisms in C, its prepro
essor

103

and runtime system. Both programming
onventions and the new me
hanisms for

introspe
tion are des
ribed in this se
tion.

5.3.1 Idioms and
onventions

All the introspe
tion
apabilities des
ribed above for C also apply in C8. Moreover,

ompile-time type annotation is also available, as in C++, via the overloading

resolution me
hanism, e.g.:

forall (type T) string get type string(T t) f return "unknown"; g

forall (type T) string get type string(T *t) f

string ret = "pointer to ";

return ret + get type string(*t);

g

string get type string(int i) f return "int"; g

Sin
e the C8 type system allows for overloading of variables, this te
hnique is

also useful to designate spe
ial values asso
iated with a type. The exa
t relation

of the value with the type is given by an appropriately des
riptive variable name.

Consider, for example, types with a maximum value, like those shown below.

int max = INT MAX;

oat max = FLOAT MAX;

forall(type T j f T max; T end; Bool ?!=?(T, T);

Bool ?<?(T, T); Bool ?>=?(T, T);

T >>(istream is);g)

104

T �nd min(T lower bound) f

/* read Ts from an input stream, �nd min from read values

greater than lower bound */

T
ur = max;

while(
ur != end) f

T temp;

is >> temp;

if (temp <
ur && temp >= lower bound)

ur = temp;

g

return
ur;

g

�nd min(7); // uses max = INT MAX

�nd min(�3.14); // uses max = FLOAT MAX

Although naming
onventions allow for
ertain forms of type annotation, it is

not useful for the asso
iation of arbitrary data with types. Therefore, a spe
ialized

me
hanism is needed.

5.3.2 Attribute me
hanism

There is interesting information about the program that is ina

essible through the

overloading resolution pro
ess or any other me
hanisms within the language. To

gain a

ess to it, a new me
hanism is ne
essary, that of attributes.

Rather than Ada's suÆx notation, C8 adopts a pre�x fun
tion-like notation,

whi
h makes
lear that the asso
iation is done on types, while reusing a familiar

syntax. C8's attributes are regular C identi�ers pre�xed with the
hara
ter `�'.

Their use in expressions follows the grammar in �gure 5.2.

Attributes allow for the provision of a minimal program representation through

whi
h limited introspe
tive
apabilities are provided. Most re
e
tive systems assure

onsisten
y between the rei�ed program representation and the a
tual program by

\opening" the
ompiler and providing hooks into the intermediate representations.

C8 takes an alternative approa
h, whi
h
an be des
ribed as lightweight [49℄: the

105

hattribute expressioni ::= hattribute identiferi

j hattribute identiferi '(' htype namei ')'

j hattribute identiferi '(' [hassignment expressioni ℄

;

')'

Figure 5.2: C8 attributes grammar

translator generates language obje
ts that provide a

ess to the
ompiler's program

representation. This strategy removes the tension between having a representation

that is
onvenient to manipulate by the programmer and at the same time eÆ-

ient to implement by the system. On the other hand, sin
e the representation

of the program is
reated by the
ompiler from what the
ompiler itself is using,

onsisten
y is also guaranteed. Consider the following example:

enum work week f MON, TUE, WED, THU, FRI, g;

for(enum work week day = �enum �rst(work week);

day <= �enum last(work week); day= �enum next(day)) f

printf("Opening hour in day %s: %d\n", �enum name(day), op hour[day℄);

g

be
omes:

enum work week f MON, TUE, WED, THU, FRI, g;

har * enum name(enum work week e) f

swit
h(e) f

ase MON:

return "MON";

. . .

g

g

106

enum work week enum next(enum work week e) f

swit
h(e) f

ase MON:

return TUE;

. . .

g

g

for(enum work week day = MON; day <= FRI; day = enum next(day)) f

printf("Opening hour in day %s: %d\n", enum name(day), op hour[day℄);

g

Noti
e that
ertain built-in attributes are
ompile-time
onstants, and are inlined.

This strategy allows for de
larations of the form:

int hours per day[�enum size(enum work week) ℄;

A listing of C8's expression-returning built-in attributes is presented in table 5.1.

The attributes �enum next() and �enum previous() allow enumerated values

mapping to a non-
ontiguous set of integers. The introspe
tive
apabilities into

stru
tures are fairly limited, and only permit the enumeration of the �eld names

and number of �elds. These attributes are provided as interesting examples, as it

is
lear that the list
an grow signi�
antly.

Not all built-in attributes are related to types, for example, the �fun
 attribute,

provides the same kind of information as C99's fun
 identi�er, in providing the

name of the
urrent fun
tion. This pie
e of information is useful, for instan
e, to

keep tra
k of the sour
e of an ex
eption:

terminate mkIO ex
eption(�fun
());

As a result of the implementation of polymorphi

alls, the C8 inner ma
hinery

maintains a runtime type des
riptor, whi
h
ontains su
h information as the size

and alignment of a parti
ular type. It also
ontains values and fun
tions that are

ommon to all types, su
h as a string representation (like that of of C++ type info),

and an assignment fun
tion. This information is valuable in several situations.

107

Prototype Meaning

har *�fun
(void) Name of
urrent fun
tion

unsigned int �enum size(enum type) enumeration size

har *�enum name(enum type elm) string representation of

enum
onstant

enum type �enum previous(enum type elm) previous value in enu-

meration

enum type �enum next(enum type elm) next value in enumera-

tion

enum type �enum first(enum type) Takes enum name or

value and returns �rst

onstant in enum

enum type �enum last(enum type) Takes enum name or

value and returns last

onstant in enum

har ** �stru
t fieldnames(stru
t type) name of �elds in stru
t

unsigned int �stru
t numfields(stru
t type) Number of �elds in stru
t

har * �typename(type) string representation of a

type

Table 5.1: Built-in attributes in C8

108

Consider a programmer wishing to �nd out what type is instantiated by the system

for a parti
ular polymorphi

all:

forall(type T) void polyfun(T t) f

printf("Type T was instantiated in fun
tion %s as: %s", �fun
(), �typename(T));

// . . .

g

A programmer
an override the behaviour of a generated fun
tion by providing

their own implementation, as long as the interfa
e is respe
ted. This informa-

tion,
ombined with ri
her metaprogramming fa
ilities, would allow programmers

to
ontrol or spe
ify the automati
 generation of
ode (�a la ma
ros or templates).

Although C8 is
urrently nowhere near this stage, the attribute me
hanism is a

step in the right dire
tion.

5.4 Related Work

Current programming tasks require
exibility (e.g., lo
alization) and intera
tion

with external data and
omputational sour
es. These requirements suggest that it

would be bene�
ial for the programmer to have a single form to provide all auxiliary

information on program elements [138℄. This information
an then be used by

development tools, development tools, deployment tools (e.g., stub generators), or

run-time libraries. Already in
orporated in C# in the form of attributes, metadata

fa
ilities have been proposed for the up
oming version of the Java programming

language [17℄, and furnish Java with a means of asso
iating arbitrary attribute

information with parti
ular
lasses/interfa
es/methods/�elds.

The integration of annotations with the C programming language has not been

widely explored. The intensional programming language Intensional C i

 [74℄

allows the annotation of identi�ers (fun
tions and variables) with versioning spe
-

i�
ations, and in
ludes algorithms to best mat
h versions of software
omponents.

This information is a

essible at runtime via a new keyword, \vswit
h".

The automati
 generation of fun
tions that a

ess
ompli
ated data obje
ts

109

has been studied by Sheard [115℄ in the
ase of re
ursive types, and by Grossman

[62℄ and Chuang et al.[29℄. Closer to the approa
h presented here is the work by

Willink et al. [137℄, whi
h relies on a deeply embedded obje
t-oriented prepro
essor

in C++, enri
hed with meta-fun
tions and meta-variables.

libpdel [2℄ is a library that allows a user to des
ribe a C type in a homogeneous

stru
ture, and then works on this stru
ture to provide marshalling into XML-RPC

and other proto
ols. It also allows for introspe
tion of �eld names. The Gnome

GObje
t [128℄, in addition to these features, develops a
omplete dynami
-type

system for C.

110

Chapter 6

C language
ompatibility

One of the C8 programming language design obje
tives is to be ba
kwards
om-

patible with C, as the latter is de�ned in its Standard [6℄. This goal was met to

a large extent, but due to the new
onstru
ts introdu
ed in C8, and a desire to

�x problems in C, a small number of in
ompatibilities exist. Among these, the

most obvious are the new keywords and the modi�
ation to the behaviour of the

multibran
h sele
tion-statement swit
h (se
tion 3.2). Be
ause of these
hanges,

C8 marks as invalid some legal C programs. This
hapter is a �rst approximation

to estimate the number of C programs that might be in this situation. To this end,

a large body of
ode is sear
hed for instan
es of the prognosti
ated in
ompatibili-

ties. The ma
hinery set in pla
e to
arry out this task also allows, as a side bene�t,

an estimation of the usefulness of
ertain C8 extensions.

6.1 Experimental setup

This
hapter des
ribes an experiment
onsisting of s
anning a
orpus of valid C

ode for
ode fragments that have been made invalid in C8, and
ode fragments

that
ould bene�t from new features of C8. C8's in
ompatibilities arise from the

introdu
tion of new keywords and
hanges to
ontrol statements, in parti
ular the

hange to the behaviour of the swit
h statement (x3.2). The �rst language
hange

is unavoidable, and designers of every language that extends another must
hoose

111

new keywords
arefully, so as to
ause the least disruption in existing
ode. The

hypothesis of the experiment is that C8 keywords seldom
on
i
t with existing C

variable names and other identi�ers. As for the
hanges in the swit
h
onstru
t,

I maintain that
hanges in C8
odify existing best pra
ti
es, already respe
ted by

programmers. Evinden
e to support these
ontentions is presented, giving
reden
e

to the
laim that few
on
i
ts should o

ur in lega
y
ode.

The patterns sear
hed for in the
orpus of C
ode are:

Identi�er
lashes If a C program in
ludes among its identi�ers (variables, fun
-

tions, formal parameters, et
.) uses of C8 keywords, it is not valid C8.

Changes to the swit
h statement C8 has disallowed statements in between

the swit
h and �rst
ase, whi
h prevents usage su
h as Du�'s devi
e. It

also modi�es the behaviour of de
larations in this position by guaranteeing

that initialization is performed. How limited the impa
t of these C8
hanges

is
an be as
ertained by observing the following properties of the
orpus:

� The number of swit
hes. The e�e
ts of
hanges to a language
onstru
t

are ne
essarily more lo
alized if the
onstru
t is used sparingly.

� Whether swit
hes are intertwined with other
ontrol stru
tures. Any

ode that exhibits this property would be disallowed in C8.

� Little or no
ode is pla
ed between the swit
h and the �rst
ase. Any

ode that exhibits this property
ould have its meaning
hanged in C8.

Fall-through
ase
lauses The usefulness of
ertain C8 extensions
an be esti-

mated by how often a C pattern (idiom) is used that
an be repla
ed by a

simpler C8 me
hanism. There are two main idioms for using fall-through.

112

The �rst one is for
as
ading a series of options that overlap, e.g.:

swit
h (arg
) f

ase 3:

// open out�le �le

// fall through to handle input �le

ase 2:

// open input �le

break;

default:

// print usage message

g

The se
ond is to
on
atenate
ases in su
h a way as to make up for C's la
k

of lists and ranges as
ase guards. By examining the use of fall-through
ase

lauses, it is possible to determine when this idiom
an be repla
ed by C8's

ase ranges or lists. This, of
ourse, is just an initial approximation, as new

idioms and styles of programming may arise from having more
ompli
ated

ase guards, and
ombining it with other fa
ilities in the language.

Subsequent se
tions des
ribe the
orpus of
ode examined, how this population

is sampled, the tools and te
hniques by whi
h the sample is analysed and, �nally,

the results of the analysis. These results provide the eviden
e to
on
lude that the

modi�
ations made in C8 do not a�e
t a large amount of existing C
ode. This

out
ome suggests that the restri
tions C8 imposes are
onsistent with existing

oding
onventions; as a result, programmers who observe these
onventions will

not en
ounter the in
ompatibilities.

6.2 Corpus

The
ode that
onstitutes the
orpus over whi
h the sear
h is
ondu
ted is ob-

tained from the \open sour
e" movement. Many of these programs, freely available

in sour
e form, are intended to be produ
tion-quality, to be used in day-to-day

113

operations. Most of them have been written adhering to some
oding standard and

have been subje
t to some minimal editorial review or peer examination, guaran-

teeing at least a minimal level of quality. Code
ompliant with this
riteria and

still deemed illegal by a C8 implementation
annot be dismissed as an example of

poor C
oding pra
ti
es, but as eviden
e against the assumptions that informed

the design of C8.

The GNU proje
t is a prime example of open-sour
e
ode. Also, its repository

is
onveniently a

essible and extensively mirrored. The
ode it hosts has no par-

ti
ular bias towards any appli
ation domain nor are parti
ular restri
tions pla
ed

on program size. However, this software
olle
tion is enormous. In 2002, Wheeler

[136℄ estimated the size of a typi
al GNU/Linux system at over 30 million lines

of
ode, 71% of whi
h are written in C. Clearly some sampling is needed to keep

these numbers within a manageable size for this experiment, and yet maintain a

signi�
ant
ross-se
tion of appli
ation domains and program size, i.e., it is desirable

for the study to in
lude programs ranging from the size of the Unix word
ounter

w
 to that of database management systems.

The GNU proje
t organizes its software in pa
kages, ea
h of whi
h
omprises

ode and do
umentation for a program or a related set of programs. The dis
ussion

that follows refers to pa
kages as the unit of distribution. Pa
kages that in
lude a

large number of exe
utables are likelier to in
lude a set of smaller
omplete programs

than pa
kages of similar size that in
lude only one exe
utable. It is reasonable to

assume that
omplete programs are des
ribed in fewer sour
e �les, i.e., that shorter

programs are
ontained in these pa
kages than, say, ema
s, a pa
kage
ontaining

thousands of sour
e �les that result in approximately ten exe
utables. The infor-

mation on the exe
utable density of a pa
kage
an also be obtained from the GNU

dire
tory.

The experimental sample
omprises various appli
ation domains, ranging over

su
h areas as language pro
essing,
ommuni
ations, system tools, statisti
s, plot-

ting, et
. Pa
kages whose
ontent is deemed too similar have been dropped from the

examined set. An example of this are the marst Algol-to-C and the
im Simula-to-C

translators, only the latter of whi
h was in
luded in the examined set.

Further
riteria have been
onsidered for the sampling pro
ess. In parti
ular,

114

Pa
kage Version LOC Des
ription

Termutils 2.0 2812 Programs for
ontrolling terminals

Wget 1.9 20688 A network utility to retrieve �les from the Web

Gsl 1.4 146420 A
olle
tion of routines for numeri
al
omputing

Ema
s 21.3 211129 The extensible display editor

Cim 3.30 22346 A
ompiler for the Simula language

Bison 1.875 19168 Parser generator (ya

 repla
ement)

Pat
h 2.5.4 7147 Apply a di� �le to an original sour
e

Plotutils 2.4.1 71743 Utilities for plotting s
ienti�
 data

Sed 4.0.9 18015 Stream Editor

Textutils 2.1 34662 Text utilities

Uu
p 1.07 48341 File
opying program

Total 602471

Table 6.1: Sele
ted pa
kages

the popularity of a pa
kage has been used as a measure for tiebreaking. Popularity

is a measure that re
e
ts the use of a pa
kage in terms of the number of times

it has been downloaded and the frequen
y of maintenan
e releases (it does not

dis
riminate, however, between feature addition and error
orre
tion). Although

not wholly re
e
tive of the quality or even usage of the
ode (some widely used

programs are famous for the irregularity of new releases), popularity is a good

measure of how
losely a pa
kage is examined and tested, and as su
h, be
ame the

de
iding fa
tor in the
ase of
on
i
t between similar pa
kages. For example, in the

ase of
im against marst des
ribed above, the more popular
im made it into the

sample. Popularity information is maintained in the GNU repository itself (in the

form of number of downloads) or, more systemati
ally, by independent open-sour
e

proje
ts dire
tories, su
h as freshmeat [1℄.

The GNU Proje
t lists 248 pa
kage in its dire
tory [54℄. 151
ould be obtained

automati
ally. Of these, 11 pa
kages,
omprising over 500,000 lines of
ode were

sele
ted. Lines of
ode (LOC)
ounts were obtained with the

ount [46℄ statisti
s

gatherer, whi
h parses C
ode and dis
ards lines
ontaining only
omments in its

results. The sele
ted pa
kages and their sizes are shown in table 6.1.

115

6.3 Code Analysis Infrastru
ture

For day-to-day programming, high-level
ode examination is often performed via

generi
 text-sear
hing tools, su
h as the well-known grep. However, the
ode pat-

terns required by this analysis are
onsiderably more
ompli
ated, and therefore

more elaborate means are
alled for.

Tools for the analysis of sour
e
ode, other than language translators, in
lude tag

generators, lines-of-
ode
ounters and a variety of others. In parti
ular, tools to aid

program understanding and reverse engineering are parti
ularly well known. Cox's

omparative survey [36℄ provides a
omprehensive overview. The most noti
eable

di�eren
e between these tools is the representation they use for the analysed
ode.

These representations range from relational databases (as in the
ase with AT&T

Resear
h Labs'
iao [83℄) to stru
tured text forms (like the XML spe
ializations

GXL [68℄, or CPPML). Cox adopted yet another approa
h in his Jupiter/Mer
ury

system [35℄, whi
h relies on the MultiText text-retrieval engine. MultiText provides

eÆ
ient a

ess to the gathered information, regardless of the size of the stored

orpus, whereas Mer
ury supplies an expressive query language. The
ombination

allows for fast and
onvenient sear
hing of ri
h patterns in potentially vast quantities

of
ode.

The parti
ulars of the internal do
ument representation, retrieval model and

query language of MultiText are explained by Clarke, et al. [30℄. It is enough

for the purposes of the
urrent dis
ussion to say that MultiText tokenizes and

annotates the do
ument, and then indexes this extended stream of tokens. An-

notations
onsist of tags that provide some information as to the semanti
 rôle of

ea
h token in the do
ument. Jupiter relies on a
ompiler front-end (the
ombination

lexer/parser/symbol table) to provide these tags.

In its original version, Jupiter in
ludes a parser, ag
, based on the Roskind

grammar [110℄, whi
h does not handle C99 or g

-extensions. Sin
e a good amount

of the examined GNU
ode makes use of these features, the system
ould not be

used \out-of-the-box". The modular ar
hite
ture of Jupiter allows for the parser

to be repla
ed by a more suitable one. Clearly, adapting the C8 translator parser

to perform this fun
tion would not be an independent measuring apparatus. A

116

workable alternative is
kit, a C
ompiler front end from Bell Labs. Extensively

tested and able to handle C99 and some g

 extensions,
kit has an extensible

ar
hite
ture that makes it possible to write plug-in modules, su
h as the
ode

annotator for Jupiter, with relative ease

1

.

The new annotator has a slightly ri
her set of tags than the original Mer
ury

(it reintrodu
es several tags of the earlier Mars [37℄ system). In parti
ular, besides

de
orating the sour
e
ode, the new annotator keeps �le and pa
kage information.

This metainformation be
omes relevant when dis
riminating
ertain aspe
ts of the

ode, e.g., multiple in
lusions of the same �le.

Building a repository from a great number of sour
es is a tedious and error-prone

task, so the highest degree of automation is desirable. First, a wrapper around the

annotator was
reated that
an be used as a plug-in repla
ement for the C
ompiler.

This wrapper allows the reuse of the pa
kage-provided Makefiles.

On
e the sour
e
ode repository is built, the information extra
tion is done via

the last
omponent of the system, the Mer
ury interpreter. Mer
ury is a modi�ed

S
heme interpreter that subsumes the MultiText query language GCL. Queries

expressed in GCL in
lude \literal", e.g., the number of o

urren
es of a string

within a �le, as well as \stru
tural" expressions, e.g., the number of uses of an

identi�er, as opposed to its de
laration.

The pro
ess of building and using the repository is illustrated in �gure 6.1. Af-

ter pa
kages have been obtained and
on�gured (whi
h is the only operation in

the system that requires signi�
ant manual intervention

2

), they are built. Via the

wrapped annotation generator, the build pro
ess transparently populates the Multi-

Text ba
kend database. This database stores the stream of tokens, and annotations

and meta-annotations that are obtained from ea
h sour
e �le after prepro
essing.

1

There is a very similar proje
t,
alled
il. The ostensible di�eren
e with
kit is that
il

is implemented in the
ompeting diale
t OCaml. The reasons
kit was
hosen over
il for

ondu
ting the experiments des
ribed in this
hapter are more
ir
umstan
ial than te
hni
al.

However,
kit has been more extensively tested with large bodies of
ode, whereas I was unable

to determine whether the same was true for
il.

2

Using the GNU Proje
t for
ode samples presents the additional advantage that these programs

onform to a
ommon
on�guration and building me
hanism, whi
h suggests that this part of the

pro
ess
an be largely automated as well.

117

build system
(Makefiles)

ckit Parser

(Text server)

textd

Mercury

database

CPP

(Index Server)

indexd

Figure 6.1: Sour
e
ode analysis system

In the �gure, the dashed lines represent the progress of a stream of data into the

system. On
e inside the repository, Mer
ury is used in bat
h mode to query the

database and gather statisti
s (the solid lines in the �gure represent query-answer

dialogues).

6.3.1 Noise-introdu
ing fa
tors

A further problem in determining the exa
t number of
ompatibility errors is due

to the fa
t that two or more �les might textually in
lude the same problemati

C �le. These errors in
lude de
laration of symbols that
lash with new keywords.

Errors of this kind would be reported as many times as a �le is in
luded. The

metainformation in
luded in the repository allows for a query to spe
ify that ea
h

�le is to be
onsidered only on
e, thus eliminating this situation.

Automati
ally generated C programs
an also slant results, as generators use

the same form of output. Errors within these �les are due more to the generator

than to the use of C, so pa
kages that involve the use of these kind of �les should be

handled espe
ially. For the pa
kages in table 6.1, the only
ode generators involved

118

are flex and bison, whose output posed no parti
ular problems.

6.4 Sear
h patterns

With the infrastru
ture des
ribed above, the C
ode sample
an be analysed with

respe
t to the
hanges in C8. As outlined in the introdu
tion, there are two
hanges

in C8 that seem the most likely to
ause in
ompatibility problems. The �rst is the

the introdu
tion of keywords that may be used as identi�ers in valid C. The se
ond

are the modi�
ations to the syntax of the swit
h statement, whi
h in C may in
lude

any number of de
larations and exe
utable statements between the keyword swit
h

and the �rst
ase, whereas C8 only allows for the in
lusion of de
larations in this

position. Also, C allows a swit
h to be interwoven with other
ontrol statements,

a behaviour that C8 disallows synta
ti
ally. Finally, understanding fall-through

ase
lauses is interesting with respe
t to C8 extensions. Uses of these
onstru
ts

are sear
hed for, to estimate their frequen
y in a
tual
ode.

Identi�er
lashes All the de
larations of variables and fun
tions are
ol-

le
ted, and then an interse
tion of them with the 12 new C8 keywords

(
hoose,
ontext, dtype, fallthru, �nally, forall, ftype, lvalue, resume,

terminate, try and type) is performed.

Swit
h frequen
y One pattern looks for all swit
h statements to determine how

frequently they o

ur.

Unrea
hable
ode in swit
hes statements between a swit
h and the �rst
ase

(or default), either exe
utable or de
larations, are
he
ked for.

Intertwined
ontrol statements Loop statements that are not
ompletely
on-

tained within a
ase blo
k are sear
hed for.

Uses of falling-through
ases
ases that do not in
lude a break or return be-

fore the next
ase in the swit
h are
onsidered an instan
e of falling through

ases.

119

Fall-through to simulate lists or ranges A
ase followed by another
ase with-

out intervening statements are
onsidered as an instan
e of
ase lists.

6.5 Results

Results are reported per pa
kage, be
ause a pa
kage provides a better sense of how

onstru
ts are used in
omplete programs, rather than fun
tions or �les. Queries

for the foreseen problemati
 patterns were submitted to the repository, with the

following results:

Identi�er
lashes: In the 11 examined pa
kages only the keywords type and

ontext appeared as identi�ers. The
lashing identi�ers are shown in the

se
ond
olumn of table 6.2. For ea
h
lash, the �rst number denotes the

number of de
larations of the
lashing identi�er and the se
ond number de-

notes the total number of identi�ers de
lared in the pa
kage.

Swit
h frequen
y: swit
h frequen
y (
ompared against the total number of state-

ments) is shown in the third
olumn of table 6.2. The usage of swit
h state-

ments is even lower than I had expe
ted.

Unrea
hable
ode in swit
hes: There was not a single o

urren
e of de
lara-

tions or exe
utable
ode after a swit
h but before the �rst
orresponding

ase.

Intertwined
ontrol stru
tures: In the
ode examined, there was not a single

o

urren
e of a swit
h intertwined with another
ontrol stru
ture (i.e., Du�'s

devi
e).

Uses of falling-through
ases: O

urren
es of fall-through
ases are reported in

the fourth
olumn of the table. The �rst number denotes the total number

of
onse
utive
ase
lauses without intervening statements (
ase lists), and

the se
ond number is the total number of o

urren
es of
onse
utive
ase

lauses with intervening statements. Note that a little over half of the uses of

fall-through
ases are for
ase list/ranges.

120

Pa
kage Identi�er
lashes swit
h Frequen
y(%) Fall through
ases

Termutils 1.10395 36/47

Wget type (2/66422) 0.52091 38/65

Gsl 0.01778 25/34

Ema
s type(16/115353) 0.63812 201/456

Cim type (1/4262) 1.39616 58/129

Bison
ontext (3/16992) 0.59113 198/211

Pat
h
ontext (7/7948) 0.00608 30/58

Plotutils type(22/5289) 0.70640 97/137

Sed 0.51948 23/35

Textutils
ontext (5/891) 0.64199 273/476

Uu
p type(3/3527) 0.51194 155/186

Table 6.2: Results

It is
lear from the results that the most problemati
 issue when
ompiling ANSI

C appli
ations via the C8 translator is the
lashing of identi�ers, in parti
ular, the

identi�er type. Sin
e the use of type is
entral to C8's parametri
 polymorphism

ma
hinery, and the use of any other word would lead to
onfusion, C8's designers

de
ided to in
lude the type keyword in the language, at the expense of minor

adjustments in C lega
y
ode. It is important to note that C++ introdu
ed a

similar number of new keywords and large systems of lega
y C
ode were adjusted

to work with it.

Next, the C8
hanges with respe
t to the swit
h statement do not present

problems be
ause programmers, in general are not using the features that were

eliminated. It is my opinion that further examination of a larger sample
omplying

with a set of
oding standards would only
on�rm the results presented here in

regards to de
larations and
ode in between swit
hes and their �rst
ase, or the

popularity of Du�'s devi
e and its variants. Their absen
e in the examined sample

is indi
ative of their rarity in pra
ti
al
ode.

Finally, the observed use of fall-through in swit
hes suggests that the
ombina-

tion of C8's
hoose and
ase lists and ranges
over half of the situations where this

problemati
 feature is ne
essary, with bene�ts to readability and maintainability.

Hen
e, these extensions appear to be warranted.

121

6.6 Related work

Sour
e
ode analysis is normally asso
iated with program understanding and reverse-

engineering (for example, see [33℄). However, there are some instan
es of empiri
al

analysis of sour
e-
ode
orpora as a means to settle language design dis
ussions,

e.g., Wright's [139℄ study of ML sour
e
ode resolved the dispute in regards to the

introdu
tion of the value restri
tion rule in the language. Parti
ularly relevant to

the study des
ribed in this
hapter is Ernst et al. [52℄, whi
h examined C prepro
es-

sor usage to determine the importan
e of prepro
essor-aware tools for sour
e-
ode

analysis.

The existen
e of a large variety of diale
ts of the C language have motivated

ompatibility studies. The analysis of the
ompatibility between C and C++ has

drawn, understandably, parti
ular interest. Most of this studies, however, use a

high-level approa
h, e.g. Stroustroup [124, 125℄ or Tribble [133℄. To my knowledge,

analysis of a large sour
e-
ode base to measure
ompatibility with an extended

language has not been done for C.

122

Chapter 7

Con
lusions

William Bragg said that the important thing in S
ien
e is not so mu
h to obtain

new fa
ts as to dis
over new ways of thinking about them. In a similar vein, mu
h

of this thesis is about sele
tively
hoosing a number of existing language ideas and

blending (engineering) them together to produ
e a set of
onsistent, orthogonal and

expressive extensions to C. Unfortunately, it is diÆ
ult to quantitatively measure

the su

ess of this work be
ause all useful programming languages are Turing-

omplete and all Turing-
omplete programming languages are equivalent in some

broad sense. Nevertheless, there are di�eren
es among programming languages be-

ause programmers often
hose a languages to �t an appli
ation problem, implying

one language has at least subje
tive advantages over another in
ertain spe
i�

situations. Given that many of the di�eren
es among programming languages are

subje
tive, are there some general observations that
an be made about what is

good or bad?

There is strong eviden
e that supports the
laim that the variety of problems

omputers are used to solve, and of programmers writing solutions for them, es
ape

the s
ope of any single programming language. Di�erent languages rely and imple-

ment a di�erent \
luster of programming notions" [43℄. Trying to make this
luster

as large as possible for a parti
ular language results in \kit
hen sink" languages

like PL/I and Ada, whi
h are extremely powerful but have not enjoyed widespread

a

eptan
e.

123

An alternative to the \kit
hen sink" approa
h for language design is to provide

a set of powerful me
hanisms and let programmers build libraries to generalize

the language into multiple appli
ation domains. What is
ru
ial in this approa
h

is that the me
hanism for extension must meld with the builtin language features

and with the extensions generated by programmers, resulting in a seamless language

system. C++ made an ex
ellent attempt at this approa
h, integrating builtin and

user-de�ned types within a
omplex, extensible type-system supporting inheritan
e,

overloading and generi
s.

However, another
omponent of C++'s su

ess is its extension from the simple

programming model of C, a language already popular, in
onsistent and unsur-

prising ways to make use of well-
hosen abstra
tions. This s
hool of design is the

\evolutionary" approa
h, and it involves a more
onstrained design spa
e than its

\revolutionary"
ounterpart (like Java). Whereas the latter approa
h requires a

lear notion of the new language and its abstra
tion, the former also presupposes

a thorough understanding of the substrate language, both in design and how it

is used. Careful synta
ti
 extensions and a �rm grasp of the intera
tions of the

added abstra
tions are ne
essary to make the extensions �t with existing notions.

Interestingly, the
urrent growth of C++ re
e
ts its adoption by more ambitious

programming proje
ts, and these proje
ts are
orrespondingly using more of the

advan
ed languages features (espe
ially the generi
 Standard Template Library).

C8 mimi
s the approa
h taken by C++ but adopts a di�erent set of abstra
tions

me
hanisms to a
hieve its goals. First, C8 attempts to remain ba
kwards
ompat-

ible with the large
orpus of lega
y C
ode (as did C++). Se
ond, C8 attempts

to �x some of the more obvious
aws in C in an attempt to make the language

a

essible to a broader range of programmers, even beginning programmers (unlike

C++). Third, C8 introdu
es a number of new language abstra
tions and me
ha-

nisms that I believe signi�
antly extend the power of the language and simplify the

programming task.

C8, as presented initially by Dit
h�eld [47℄, introdu
ed to C a type system that

provides for advan
ed overloading and polymorphi
 fun
tions, while preserving the

semanti
s of the existing type system. C8 programmers
an spe
ify the behaviour

of fun
tions without extensionally refering to types but by intensionally des
ribing

124

types in terms of the operations the fun
tion uses. Bilson's implementation of this

type system [16℄ introdu
es extensions (MVR fun
tions) and artifa
ts that serve as

starting points for the features des
ribed in this thesis.

In this thesis, both
orre
tive and proa
tive
hanges have been made to C. In

hanging the swit
h statement I have revisited an existing
ontrol stru
ture to

prevent some egretious mistakes and misuses. In adding new syntax for de
la-

rations, new loop
ontrol statements and the
hoose statement, I have provided

more stru
tured and less error-prone me
hanisms that
an
o-exist with their tra-

ditional
ounterparts for the sake of lega
y
ode. In adding tuples, ex
eptions and

attributes, I have enabled new ways of writing programs that
an redu
e the e�ort

involved and in
rease robustness. Finally, I have demonstrated that these
hanges

have minimal impa
t on existing C programs.

The litmus test of the e�e
tiveness of a programming language is usage. Cur-

rently there is only a very small amount of C8
ode, in the form of test pro-

grams used to as
ertain the
orre
tness of spe
i�
 me
hanisms. There are no

medium/large programs to demonstrate the appli
ability of these me
hanisms to

spe
i�
 programming tasks. Nevertheless, languages with similar fa
ilities, like

Java, C++ and ML, have shown that similar features are useful and usable, but

only time and use will tell the true e�e
tiveness of these features, as well as the

tasks they are most adequate for.

7.1 Future Work

Although C8 goes a long way toward �xing the most insidious short
omings of C,

there are still areas that need addressing. First, the built-in support for arrays in C

is error-prone and diÆ
ult for beginners to understand, but is so deeply ingrained

in the language that it is impossible to
hange in any signi�
ant way. A better

ad ho
 array me
hanism is feasible, but I feel a more general solution, generi

types, is preferable. Su
h an addition to the C8 type system would permit the

en
apsulation of adequate array handling fa
ilities in a library, as well as provide

support for generi

ontainer libraries. To this end, some initial design work has

been done on generi
 types for C8, but it is still far from
ompletion.

125

Two other glaring defe
ts in C are
urrently unaddressed by C8:
on
urren
y

me
hanisms, and advan
ed support for modularity. Con
urren
y opens the door for

a new way of thinking about programming and stru
turing programs. Modularity

fa
ilitates the development of large systems. Of the two, the one that requires

the greatest design e�ort is, without a doubt,
on
urren
y, given the diversity of

on
urren
y me
hanisms and approa
hes. Both
on
urren
y and modularity are

ru
ial for modern programming tasks, and in
rease the possibilities of su

ess for

a language.

Also
ru
ial for the su

ess of a language is the availability of development

tools. Features like attributes, that allow for additional
ommuni
ation between

the program and language pro
essing systems, allow for powerful tools. Traditional

support tools like debuggers and pro�lers are likely to be similar to those in ex-

isten
e, but the sophisti
ated type system in
orporated in C8 will likely require

a
onstru
tive tool that furnishes programmers with information about the over-

loading resolution and type spe
ialization pro
ess. To this end, I am developing

an explainer, in the spirit of the one des
ribed by Duggan [50℄, that presents the

pro
ess of type sele
tion in a meaningful way.

Another area that remains unexplored in this work is the optimization that the

new forms in the language allow. The expressiveness gained in C8 indi
ates that

there is more information available to an optimizer for generating more eÆ
ient

ode. To exploit these hypotheti
al gains, however, would require the
reation of

a true C8
ompiler, rather than the
urrent translator approa
h. In addition, the

sound theoreti
al basis that the C8 type system provides is likely to help verify the

orre
tness of
ode optimizations.

Finally, the C8 type system is built upon an elegant formalism. Wanting equally

solid theoreti
al standing for the extensions presented in this thesis, I looked for

appropriate formalisms to
over tuples, ex
eptions and attributes. Interestingly, I

believe now that I have found a single formalism that
overs all these features. The

intuitionisti
 modal logi
 S4, when mapped into a type system, en
ompasses the

stati
 and dynami
 aspe
ts of all the extensions dis
ussed in the text. Experimen-

tal languages like Template Haskell and MetaML, based on variants of this type

system are be
oming in
reasingly important within the resear
h
ommunity, and

126

are also starting to draw the attention of pra
titioners, sin
e they provide a solid

foundation for persisten
e, distributed programming and other dynami
 program-

ming tasks. If the C8 type system is extended in this dire
tion, not only would the

bene�ts of a more dynami
 style of programming be reaped, but they would also be

attained without detriment to lega
y
ode, or a steep learning
urve. A language

traditionally
onsidered low- to mid-level, that
ould traverse the whole spe
trum

of
omputation and stand together with languages that enable the highest level

of abstra
tion, would be the ultimate argument for the evolutionary approa
h of

programming language design.

127

Bibliography

[1℄ freshmeat Unix and
ross-platform Software Dire
tory. http://freshmeat.

net.

[2℄ The pa
ket design embedded library. http://www.dellroad.org/pdel.

[3℄ Risks the programming language is a

ountable for. http://
atless.n
l.

a
.uk/Risks/9.69.html.

[4℄ From C to C++: Interviews with Dennis Rit
hie and Bjarne Stroustrup.

Dr. Dobb's Journal C Sour
ebook, 1990.

[5℄ The libunwind proje
t. http://www.hpl.hp.
om/resear
h/linux/

libunwind/, De
ember 2003.

[6℄ ISO/IEC 9899. Programming languages { C. 1999.

[7℄ Andrei Alexandres
u. Modern C++ design. Addison-Wesley Publishing Com-

pany, 2001.

[8℄ Eri
 Allman and David Been. An ex
eption handler for C. In USENIX

Asso
iation Summer Conferen
e Pro
eedings, pages 25{45, Portland. Oregon,

USA, June 1985.

[9℄ Ameri
an National Standards Institute. Information Pro
essing Systems

Committee X3 and Computer and Business Equipment Manufa
turers As-

so
iation. Rationale for draft proposed Ameri
an National Standard for in-

formation systems: programming language C: X3J11/88-15: Proje
t: 381-D.

Te
hni
al report, 1988.

129

[10℄ Bru
e Anderson. Type syntax in the language C: An obje
t lesson in synta
ti

innovation. ACM SIGPLAN Noti
es, 15(3):21{27, Mar
h 1980.

[11℄ Andrew W. Appel and David B. Ma
Queen. Separate
ompilation for stan-

dard ML. In SIGPLAN Conferen
e on Programming Language Design and

Implementation, pages 13{23, 1994.

[12℄ J. Mi
hael Ashley and R. Kent Dybvig. An eÆ
ient implementation of mul-

tiple return values in S
heme. In 1994 ACM Conferen
e on LISP and Fun
-

tional Programming, June 1994.

[13℄ Lennart Augustsson. Cayenne, a language with dependent types. In Pro-

eedings of the third ACM SIGPLAN international
onferen
e on Fun
tional

programming, pages 239{250, 1998.

[14℄ Matt H. Austern. Generi
 Programming and the STL. Professional
omputing

series. Addison-Wesley Publishing Company, 1999.

[15℄ D.W. Barron, J.N. Buxton, D.F. Hartley, E. Nixon, and C. Stra
hey. The

main features of CPL. The Computer Journal, 6(2):134{143, July 1963.

[16℄ Ri
hard Bilson. Implementing overloading and polymorphism in Cforall. Mas-

ter's thesis, University of Waterloo, Waterloo, Ontario, February 2003.

[17℄ Joshua Blo
h. JSR 175: A metadata fa
ility for the Java programming lan-

guage. http://www.j
p.org/en/jsr/detail?id=175.

[18℄ Matthias Blume. No-longer-foreign: Tea
hing an ML
ompiler to speak C

\natively". In Ni
k Benton and Andrew Kennedy, editors, Ele
troni
 Notes in

Theoreti
al Computer S
ien
e, volume 59. Elsevier S
ien
e Publishers, 2001.

[19℄ The boost library. http://www.boost.org, 2000.

[20℄ Gilad Bra
ha, Martin Odersky, David Stoutamire, and PhilipWadler. Making

the future safe for the past: Adding generi
ity to the Java programming

language. In Craig Chambers, editor, ACM Symposium on Obje
t Oriented

Programming: Systems, Languages, and Appli
ations (OOPSLA), pages 183{

200, Van
ouver, BC, 1998.

130

[21℄ Timothy A. Budd. An implementation of generators in C. Computer Lan-

guages, 7(2):69{87, 1982.

[22℄ Peter Buhr, Ashif Harji, and W.Y.Russel Mok. Advan
ed ex
eption handling.

IEEE Transa
tions on Software Engineering, 26(9):820{836, September 2000.

[23℄ Peter A. Buhr. A
ase for tea
hing multi-exit loops to beginning programmers.

SIGPLAN Noti
es, 20(11):14{22, Nov 1985.

[24℄ Peter A. Buhr. Are safe
on
urren
y libraries possible? Communi
ations of

the ACM, 38(2):117{120, February 1995.

[25℄ Peter A. Buhr, Hamish I. Ma
donald, and C. Robert Zarnke. Syn
hronous

and asyn
hronous handling of abnormal events in the �System. Software|

Pra
ti
e and Experien
e, 22(9):735{776, 1992.

[26℄ Peter A. Buhr, David Till, and C.R. Zarnke. Assignment as the sole means

of updating obje
ts. Software|Pra
ti
e and Experien
e, 24(9):835{870,

September 1994.

[27℄ D. Cameron, P. Faust, D. Lenkov, and M. Mehta. A portable implementation

of C++ ex
eption handling. In Pro
eedings of the C++ Conferen
e, pages

225{243. USENIX Asso
iation, August 1992.

[28℄ Morten Mikael Christensen. Methods for handling ex
eptions in obje
t-

oriented programming languages. Master's thesis, Odense University, Den-

mark, January 1995.

[29℄ Tyng-Ruey Chuang, Chuan-Chieh Jung, Wen-Min Kuan, and Y. S. Kuo. Ob-

je
tstream: Generating stream-based obje
t I/O for C++. In 24th Interna-

tional Conferen
e on Te
hnology of Obje
t-Oriented Languages and Systems,

pages 81{90, Beijing, China, September 1997.

[30℄ Charles L.A. Clarke, Gordon V. Corma
k, and Forbes J. Burkowski. An

algebra for stru
tured text sear
h and a framework for its implementation.

The Computer Journal, 38(1):43{56, 1995.

131

[31℄ The C Language Standardization Committee. The C language standardiza-

tion
harter. http://std.dkuug.dk/JTC1/SC22/WG14/www/
harter.

[32℄ Curtis R. Cook. Information theory metri
 for assembly language. Software

Engineering Strategies, pages 52{60, Mar
h/April 1993.

[33℄ Tama Communi
ation Corporation. Sour
e
ode tours. http://www.

tama
om.
om/tour.html.

[34℄ Adam M. Costello and Cosmin Truta. CEXCEPT ex
eption handling in C.

http://
ex
ept.sour
eforge.net.

[35℄ Anthony Cox. Jupiter user manual and Mer
ury language referen
e. Draft.

[36℄ Anthony Cox and Charles Clarke. A
omparative evaluation of te
hniques for

synta
ti
 level sour
e-
ode analysis. In 7th Asia-Pa
i�
 Software Engineering

Conferen
e (APSEC), Singapore, De
ember 2000.

[37℄ Anthony Cox and Charlie Clarke. A fun
tional approa
h to
omplex retrieval

tasks. In Ninth International Workshop on Fun
tional and Logi
 Program-

ming, pages 486{498, Beni
assim, Spain, September 2000.

[38℄ Brad J. Cox and Andrew J. Novobilski. Obje
t Oriented Programming:

An Evolutionary Approa
h. Addison-Wesley Publishing Company, Reading,

Mass., USA, 1991.

[39℄ C.T.Zahn. C Notes: A guide to the C programming language. Yourdon Press,

1979.

[40℄ Krzysztof Czarne
ki and Ulri
h W. Eisene
ker. Generative programming:

methods, tools, and appli
ations. Addison-Wesley Publishing Company, 2000.

[41℄ Laurent Dami. Obje
t-Oriented Software Composition,
hapter Fun
tions,

Re
ords and Compatibility in the � N-Cal
ulus, pages 153{174. Prenti
e

Hall, 1995.

[42℄ C. J. Date. An introdu
tion to database systems: vol. I (4th ed.). Addison-

Wesley Publishing Company, 1986.

132

[43℄ Ja
o de Bakker and Erik de Vink. Control
ow semanti
s. MIT Press, 1996.

[44℄ Universidad de Oviedo's Computational Re
e
tion Group. The nitrO system.

http://www.di.uniovi.es/refle
tion/lab.

[45℄ Robert B.K. Dewar and Edmond S
honberg. The elements of SETL style. In

Pro
eedings of the 1979 annual
onferen
e, pages 24{32. ACM Press, 1979.

[46℄ Thomas E. Di
key.

ount, the C language line
ounter. http://di
key.

his.
om/
_
ount/
_
ount.html.

[47℄ Glen Je�rey Dit
h�eld. Contextual Polymorphism. PhD thesis, University of

Waterloo, 1994.

[48℄ V�eronique Donzeau-Gouge, Gilles Kahn, and Bernard Lang. Formal de�ni-

tion of the Ada programming language. Te
hni
al report, Honeywell, CII

Honeywell Bull, INRIA, November 1980. (preliminary).

[49℄ R�emi Douen
e and Mario S�udholt. On the lightweight and sele
tive intro-

du
tion of re
e
tive
apabilities in appli
ations. In ECOOP'00 Workshop on

Re
e
tion and Meta-Level Ar
hite
tures, 2000.

[50℄ Domini
 Duggan and Frederi
k Bent. Explaining type inferen
e. S
ien
e of

Computer Programming, 27(1):37{83, 1996.

[51℄ Daniel Edelson and Ira Pohl. C++: Solving C's short
omings? Computer

Languages, 14(3):137{152, September 1989.

[52℄ Mi
hael D. Ernst, Greg J. Badros, and David Notkin. An empiri
al anal-

ysis of C prepro
essor use. IEEE Transa
tions on Software Engineering,

28(12):1146{1170, De
ember 2002.

[53℄ Mi
hael J. Fis
her. Lambda-
al
ulus s
hemata. LISP and Symboli
 Compu-

tation, 6(3/4):2599{288, November 1993.

[54℄ Free Software Foundation. FSF/UNESCO Free Software Dire
tory. http:

//www.gnu.org/dire
tory/.

133

[55℄ Daniel P. Friedman and David S. Wise. Fun
tional
ombination. Computer

Languages, 3(1):31{35, 1978.

[56℄ Ri
hard P. Gabriel. Worse is better. http://www.dreamsongs.
om/

WorseIsBetter.html.

[57℄ Ri
hard P. Gabriel. The end of history and the last programming language.

Journal of Obje
t Oriented Programming, 20(7), July 2002.

[58℄ Ronald Gar
ia, Jaakko J�arvi, Andrew Lumsdaine, Jeremy Siek, and Jeremiah

Will
o
k. A
omparative study of language support for generi
 programming.

In Pro
eedings of the 18th ACM SIGPLAN
onferen
e on Obje
t-oriented

programing, systems, languages, and appli
ations, pages 115{134, 2003.

[59℄ Ja
ques Garrigue and Hassan A��t Ka
i. The typed polymorphi
 label-sele
tive

�-
al
ulus. In Pro
. of the 21st ACM Symposium on Prin
iples of Program-

ming Languages, Portland, 1994.

[60℄ John B. Goodenough. Ex
eption handling: Issues and a proposed notation.

Communi
ations of the ACM, 18(12), De
ember 1975.

[61℄ Paul Graham. ANSI Common Lisp. Prenti
e Hall, 1995.

[62℄ Mark Grossman. Obje
t I/O and runtime type information via automati

ode generation in C++. Journal of Obje
t Oriented Programming, 6(4):34{

42, July/August 1993.

[63℄ The OMG Group. C language mapping spe
i�
ation. http://www.omg.org/

gi-bin/do
?formal/99-07-35, 1999. (OMG formal/99-07-35).

[64℄ W.T. Hardgrave. Positional versus keyword parameter
ommuni
ation in

programming languages. ACM SIGPLAN Noti
es, 11(5):52{58, May 1976.

[65℄ Robert Harper, Bru
e F. Duba, and David Ma
Queen. Typing �rst-
lass

ontinuations in ML. In Conf. Re
ord 18th Ann. ACM SIGPLAN-SIGACT

Symp. on POPL 91, Orlando, FL, January 1991.

134

[66℄ C.A.R. Hoare. Hints on programming language design. ACM Symposium on

Prin
iples of Programming Languages, pages 1{30, 1973.

[67℄ C.A.R. Hoare. ACM Turing Award Le
tures. The �rst twenty years 1966{

1985,
hapter The emperor's old
lothes. ACM Press/Addison-Wesley Pub-

lishing Co., 1987.

[68℄ Ri
hard C. Holt, Andreas Winter, and Andy S
h�urr. GXL: Toward a standard

ex
hange format. In Seventh Working Conferen
e on Reverse Engineering,

pages 162{171, Brisbane, Queensland, Australia, November 2000.

[69℄ IEEE. IEEE Std 1003.1-2001 Standard for Information Te
hnology |

Portable Operating System Interfa
e (POSIX) Base De�nitions, Issue 6,

2001.

[70℄ Samuel Harbison III and Guy Lewis Steele Jr. C A referen
e manual. Prenti
e

Hall, 5th edition, 2002.

[71℄ International Organization For Standardization, International Ele
trote
h-

ni
al Comission, Intermetri
s In
. Annotated Ada Referen
e Manual, v6.0

edition, De
ember 1994. ISO/IEC 8652:1995.

[72℄ Jaakko J�arvi. Tuple types and multiple return values. C/C++ Users' Journal,

19:24{35, August 2001.

[73℄ Jaakko J�arvi and Bjarne Stroustrup. Me
hanisms for querying types of ex-

pressions: de
ltype and auto revisited. Te
hni
al Report N1571, Proposal

to the C++ Standard Committee.

[74℄ Xing Jin. Intensional C
ompiler. http://i.
s
.uvi
.
a/~jinxing/i

.

[75℄ Mark P. Jones. Type
lasses with fun
tional dependen
ies. In Pro
eedings of

the 9th European Symposium on Programming Languages and Systems, pages

230{244, 2000.

[76℄ Ri
hard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised

5

Report on the Algorithmi
 Language S
heme. ACM SIGPLAN Noti
es,

33(9):26{76, 1998.

135

[77℄ Brian W. Kernighan. A des
ent into Limbo. http://www.vitanuova.
om/

inferno/papers/des
ent.html.

[78℄ Brian W. Kernighan and Dennis M. Rit
hie. The C Programming Language.

Prenti
e Hall, �rst edition, 1978.

[79℄ Gregor Ki
zales, Jim Des Rivi�eres, and Daniel G. Bobrow. The Art of the

Metaobje
t Proto
ol. The MIT Press, 1991.

[80℄ Jorgen Lindskov Knudsen. Advan
es in Ex
eption Handling Te
hniques, vol-

ume 2022 of Le
ture Notes in Computer S
ien
e,
hapter Fault Toleran
e and

Ex
eption Handling in BETA, pages 1{17. Springer-Verlag, 2000.

[81℄ Donald E. Knuth. Stru
tured programming with go to statements. ACM

Computing Surveys, 6(4):261{301, De
ember 1974.

[82℄ Andrew Koenig. C traps and pitfalls. Te
hni
al report, Bell Labs, July 1986.

CSTR #123.

[83℄ Bala
hander Krishnamurthy, editor. Pra
ti
al reusable UNIX software. John

Wiley & Sons, In
., 1995.

[84℄ Thomas S. Kuhn. The Stru
ture of S
ienti�
 Revolutions. University of

Chi
ago Press, 1962.

[85℄ K. L�aufer and M. Odersky. Self-interpretation and re
e
tion in a stati
ally

typed language. In Pro
. OOPSLA Workshop on Re
e
tion and Metalevel

Ar
hite
tures. ACM, O
tober 1993.

[86℄ Doug Lea. User's Guide to the GNU C++ Library (version 2.0), April 1992.

[87℄ Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen Nygaard.

Obje
t-oriented programming in the BETA programming language. ACM

Press/Addison-Wesley Publishing Co., 1993.

[88℄ Barbara Liskov. A history of CLU. ACM SIGPLAN Noti
es, 28(3):133{147,

1993.

136

[89℄ John Maddo
k and Steve Cleary. C++ type traits. Dr. Dobb's Journal,

O
tober 2000.

[90℄ Jan Messers
hmidt and Reinhard Wilhelm. Constru
tors for
omposed ob-

je
ts. Computer Languages, 7(2):53{59, 1982.

[91℄ James G. Mit
hell, William Maybury, and Ri
hard Sweet. Mesa language

manual (version 5.0). Te
h. Report CSL-79-3, Xerox Palo Alto Resear
h

Center, Palo Alto, CA, USA, April 1979.

[92℄ R. P. Mody. C in edu
ation and software engineering. ACM SIGCSE Bulletin,

23(3), September 1991.

[93℄ P.J. Moylan. The
ase against C. Te
hni
al Report EE9240, Centre of Indus-

trial Control S
ien
e, Department of Ele
tri
al and Computer Engineering,

University of New
astle, Australia, July 1992.

[94℄ Frank Mueller and David B. Whalley. Avoiding un
onditional jumps by
ode

repli
ation. In Pro
eedings of the ACM SIGPLAN 1992
onferen
e on Pro-

gramming language design and implementation, pages 322{330. ACM Press,

1992.

[95℄ Nathan C. Myers. Traits: a new and useful template te
hnique. http:

//www.
antrip.org/traits.html.

[96℄ Matthias Neubauer and Mi
hael Sperber. Down with Ema
s Lisp: dynami

s
ope analysis. In Pro
eedings of the sixth ACM SIGPLAN international

onferen
e on Fun
tional programming, pages 38{49, 2001.

[97℄ W. W. Peterson, T. Kasami, and N. Tokura. On the
apabilities of while,

repeat and exit statements. Communi
ations of the ACM, 16(8):503{512,

Aug 1973.

[98℄ Matt Pietrek. A
rash
ourse on the depths of Win32 stru
tured ex
eption

handling. Mi
rosoft Systems Journal, January 1997.

[99℄ Rob Pike. How to use the Plan 9 C
ompiler. Te
hni
al report, Computing

S
ien
es Resear
h Center, Bell Laboratories, Murray Hill, NJ, USA, 2000.

137

[100℄ Gordon Plotkin. Call-by-name,
all-by-value, and the lambda-
al
ulus. The-

oreti
al Computer S
ien
e, 1:125{159, 1975.

[101℄ Ira Pohl and Daniel R. Edelson. A{Z: C language short
omings. Computer

Languages, 13(2), 1988.

[102℄ Norman Ramsey and Simon Peyton-Jones. A single intermediate language

that supports multiple implementations of ex
eptions. In Pro
eedings of the

ACM SIGPLAN 2000
onferen
e on Programming language design and im-

plementation, pages 285{298. ACM Press, 2000.

[103℄ Jean-Claude Raoult and Ravi Sethi. Properties of a notation for
ombining

fun
tions. Journal of the Asso
iation for Computing Ma
hinery, 30(3):595{

611, 1983.

[104℄ Derek Rayside and Gerard T. Campbell. An Aristotelian understanding of

Obje
t-Oriented programming. In Pro
eedings of the
onferen
e on Obje
t-

oriented programming, systems, languages, and appli
ations, pages 337{353.

ACM Press, 2000.

[105℄ Martin Ri
hards and Colin Whitby-Stevens. BCPL { The language and its

ompiler. Cambridge University Press, 1979.

[106℄ Dennis M. Rit
hie. The development of the C programming language. In

Thomas G. Bergin and Ri
hard G. Gibson, editors, History of Programming

Languages. ACM, Addison-Wesley Publishing Company.

[107℄ Dennis M. Rit
hie. Very early C
ompilers and language. http://www.
s.

bell-labs.
om/who/dmr/primevalC.html.

[108℄ Dennis M. Rit
hie. The development of the C language. In The se
ond

ACM SIGPLAN
onferen
e on History of programming languages, pages 201{

208. ACM Press, 1993. http://
m.bell-labs.
om/
m/
s/who/dmr/
hist.

html.

138

[109℄ Eugene J. Rollins. Sour
egroup: a sele
tive-re
ompilation system. In Robert

Harper, editor, Third International Workshop on Standard ML, September

1991.

[110℄ Jim Roskind. LALR(1) C Grammar. http://www.empathy.
om/p

ts/

roskind.html.

[111℄ Tom S
hotland and Peter Petersen. Ex
eption handling in C without C++.

Dr. Dobb's Journal, pages 102{112, November 2000.

[112℄ Ravi Sethi. Uniform syntax for type expressions and de
larators. Software|

Pra
ti
e and Experien
e, 11(6):623{628, June 1981.

[113℄ Andrew Shalit. The Dylan Referen
e Manual. Apple Press/Addison Wesley,

1996.

[114℄ Mary Shaw, William A. Wulf, and Ralph L. London. Abstra
tion and veri�-

ation in alphard: de�ning and spe
ifying iteration and generators. Commu-

ni
ations of the ACM, 20(8):553{564, 1977.

[115℄ Tim Sheard. Automati
 generation and use of abstra
t stru
ture operators.

ACM Trans. Program. Lang. Syst., 13(4):531{557, 1991.

[116℄ Dorai Sitaram. unwind-prote
t in portable S
heme. In Matthew Flatt, editor,

Pro
eedings for the 4th Workshop on S
heme and Fun
tional Programming,

pages 48{52, University of Utah, November 2003. http://www.

s.neu.edu/

home/dorai/uw
all

/uw
all

.html.

[117℄ Brian Cantwell Smith. Re
e
tion and semanti
s in Lisp. In Eleventh An-

nual ACM Symposium on Prin
iples of Programming Languages, pages 23{35.

ACM, January 1984.

[118℄ Eri
 S.Raymond, Guy L. Steele Jr., and Ri
hard Stallman et al. The Jargon

�le. http://www.
atb.org/~esr/jargon/.

[119℄ Guy Steele. Growing a language. In OOPSLA '98, O
tober 1998. Invited

talk.

139

[120℄ D. Stemple, R. Morrison, G.N.C. Kirby, and R.C.H. Connor. Integrating

re
e
tion, strong typing and stati

he
king. In 16th Australian Computer

S
ien
e Conferen
e (ACSC'93), Brisbane, Australia, pages 83{92, 1993.

[121℄ Bjarne Stroustroup. XTI: The extended type information library. Te
hni
al

report, AT&T Labs { Resear
h.

[122℄ Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley

Publishing Company, 1994.

[123℄ Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Pub-

lishing Company, 3 edition, 1997.

[124℄ Bjarne Stroustrup. C and C++: Case studies in
ompatibility. C/C++

Users' Journal, 20(9):22{31, September 2002.

[125℄ Bjarne Stroustrup. C and C++: Siblings. C/C++ Users' Journal, 20(7),

July 2002.

[126℄ Stefano Tas
hini, Markus Emmenegger, Henry Baltes, and Jan G. Korvink.

Smart enumeration in C++: virtual
onstru
tion, message dispat
hing and

tables. Software|Pra
ti
e and Experien
e, 29(1):67{76, 1999.

[127℄ The Cy
lone Programming Language Team. Cy
lone homepage. http://

www.
s.
ornell.edu/proje
ts/
y
lone.

[128℄ The GTK+ team. GObje
t referen
e manual (for glib 2.5). http://

developer.gnome.org/do
/API/2.0/gobje
t/, Mar
h 2004.

[129℄ Robert D. Tennent. Language design methods based on semanti
 prin
iples.

A
ta Informati
a, 8:97{112, 1977.

[130℄ Hayo Thiele
ke. Comparing
ontrol
onstru
ts by double-barrelled CPS.

Higher-order and Symboli
 Computation, 15(2/3):141{160, 2002.

[131℄ David Till. Tuples in imperative programming languages. Master's thesis,

University of Waterloo, 1989.

140

[132℄ Andrew Peter Tolma
h. Debugging standard ML. PhD thesis, 1992.

[133℄ David R. Tribble. In
ompatibilities between ISO C and ISO C++. http:

//david.tribble.
om/text/
diffs.htm, August 2001.

[134℄ Daveed Vandevoorde. Re
e
tive metaprogramming in C++. Te
hni
al Re-

port N1471, Proposal to the C++ Standard Committee, April 2003.

[135℄ Ben Werther and Damian Conway. A modest proposal: C++ resyntaxed.

ACM SIGPLAN Noti
es, 31(11):74{82, 1996.

[136℄ David A. Wheeler. More than a gigabu
k: Estimating GNU/Linux's

size. http://www.dwheeler.
om/slo
/redhat71-v1/redhat71slo
.html,

July 2002.

[137℄ Edward D. Willink and Vya
heslav B. Mu
hni
k. Prepro
essing C++: Sub-

stitution and
omposition.
iteseer.ist.psu.edu/259759.html.

[138℄ Gregory V. Wilson. Extensible programming for the 21st
entury. http:

//www.third-bit.
om/~gvwilson/xmlprog.html.

[139℄ Andrew K. Wright. Simple imperative polymorphism. LISP and Symboli

Computation, 8(4):343{355, 1995.

[140℄ W.A. Wulf. BLISS: A language for systems programming. Communi
ations

of the ACM, 14(12):780{790, De
ember 1971.

[141℄ Hongwei Xi and Frank Pfenning. Dependent types in pra
ti
al programming.

In Pro
eedings of the 26th ACM SIGPLAN-SIGACT symposium on Prin
iples

of programming languages, pages 214{227. ACM Press, 1999.

141

Appendix A

Mis
elaneous fa
ilities

C8
ontains a number of minor features that ease the task of programming, or

fa
ilitate the reading and maintenability of C8 programs. These are extended

numeri
 literals and
ompound literals for the initialization of
omplex stru
tures.

A.1 Numeri
 Literals

In the interest of ease of readability and inspired in a similar feature found in Ada,

unders
ores embedded within a numeri
al
onstant are allowed. As most
ultures

have a similar
onstru
t, usually in the form of a
omma or a period, this addition

makes reading and typing long
onstants easier. This form of literals is invalid in

C, so the addition is ba
kwards
ompatible. All numeri
 literal forms in C99 are

allowed in C8. Examples:

143

2 147 483 648 // de
imal
onstant

56 ul // de
imal unsigned long
onstant

0 377 // o
tal
onstant

0 x � �; // hexade
imal
onstant

0x ef3d aa5
 / * hexade
imal
onstant * /

3.141 592 654 / *
oating point
onstant * /

10 e +1 00 / *
oating point
onstant * /

0x �.�; // hexade
imal
oating point

0x 1.�� �� p 128 l // hexade
imal
oating point long
onstant

Sequen
e of unders
ores, or unders
ores at the beginning or end of a sequen
e of

digits are not permitted in numeri

onstants. Noti
e that 2, or 2 , for example,

are valid identi�er names. A numeri
 pre�x may end with an unders
ore; a numeri

in�x may begin and/or end with an unders
ore; a numeri
 suÆx may begin with

an unders
ore. For example, the o
tal 0 or hexade
imal 0x pre�x may end with

an unders
ore: 0 377 or 0x �; the exponent in�x E may start or end with an

unders
ore 1.0 E10, 1.0E 10 or 1.0 E 10. Type suÆxes U, L, et
., may start with

an unders
ore: 1 U, 1 ll or 1.0E10 f.

A.2 Initializers

The C language did not use to have denotations for most aggregates (unions, arrays

and stru
tures), a situation that drove programmers to assign values to their mem-

bers in a one-by-one fashion, a pra
ti
e that is tedious, error-prone and that
an

obs
ure the intent of the program, by interleaving initialization
ode with the rest of

the algorithm. These
on
erns be
ome spe
ially important when sparse aggregates

are used in a program, whi
h is often the
ase, but they do with high frequen
y in

several problem domains, for example, numeri
al analysis.

In view of this situation, the C99
ommittee de
ided to in
orporate some form

of
ompound literals in the data initialization sublanguage, probably inspired by

the of a designated initializers extension in
luded in the g

ompiler. Although

144

these additions
an be per
eived as mere synta
ti
 sugar,
ompound denotations

an expedite
ompilation and even run-time eÆ
ien
y, sin
e (with a proper imple-

mentation) aggregate assignments
an be done with little or no analysis, whereas

the alternative element-wise assignment, almost
ertainly done with nested loops,

an only be optimized by some non-trivial data-
ow analysis [90℄.

C89 initializers
onsist of lists of s
alar literals or
ompile-time
onstant expres-

sions (another C99 extension allows these expressions to be non-
onstant). The

idea behind these lists is to represent visually the approximate layout of the obje
t

in memory. In C99, ea
h element of the initializer list
an be optionally designated,

that is, identi�ed by either a name or a number. This identi�er must
orrespond

to the names of one of the aggregate members of the aggregate being initialized,

or, in the
ase of arrays, a number (a single number, sin
e no \sli
ing" is allowed)

within its boundaries.

Designated and non-designated initializers
an be freely intermixed. The exa
t

result of ea
h initializer spe
i�
ation depends on the kind of entity being initialized.

In the
ase of an stru
t, a positional initializer following a designated one will

orrespond to the position immediately after that of the designated initializer. C8

allows for designated initializers, and extends the designator fa
ility to in
lude tuple

designations.

145

