pDatabase : A Toolkit for Constructing Memory M apped Databases
Peter A. Buhr, Anil K. Godl and Anderson Wai
Dept. of Computer Science, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

Abstract

The main objective of this work was an efficient methodology for constructing low-level databasetools that are built
around a single-level store implemented using memory mapping. The methodology allowed normal programming
pointers to be stored directly onto secondary storage, and subsequently retrieved and manipulated by other programs
without the need for relocation, pointer swizzling or reading all the data. File structures for a database, e.g. a B-
Tree, built using this approach are significantly simpler to build, test, and maintain than traditional file structures. All
access methods to the file structure are statically type-safe and file structure definitions can be generic in the type of
the record and possibly key(s) stored in the file structure, which affords significant code reuse. An additional design
requirement is that multiple file structures may be simultaneously accessible by an application. Concurrency at both
thefront end (multiple accessors) and the back end (file structure partitioned over multiple disks) are possible. Finally,
experimental results between traditional and memory mapped files structures show that performance of a memory
mapped file structure is as good or better than the traditional approach.

1 Introduction

The main objective of thiswork was an efficient methodol ogy for constructing low-level database toolsthat are built
around a single-level store. A single-level store gives theillusion that data on disk (secondary storage) is accessible
in the same way as datain main memory (primary storage), which is analogous to the goals of virtual memory. This
uniform view of data eliminates the need for complex and expensive execution-time conversions of structured data
between primary and secondary storage. A uniform view of data aso alowsthe expressive power and the data struc-
turing capabilities of agenera purpose programming language to be used in creating and mani pul ating data structures
stored on secondary storage. Although asingle-level storeisan old idea[Org72, IBM78], it has seen only limited use
inside of operating systems, and it is only during the last few years that this idea has begun to receive new attention
and approva from researchers in the database and programming language communities [CFW90, SZ90a, LLOW91].
For complex structures, a single-level store offers substantial performance advantages over conventional file access,
which is crucial to database applications such as CAD/CAM systems, text management and GIS [vO90]. We argue
that the performance advantage of a single-level storeislost if the pointers within it have to be relocated or swizzled
[CAC*84, Mos90, Wil91].

One way of efficiently implementing asingle-level storeis by means of memory mapped files. Memory mapping
isthe use of virtual memory to map files stored on secondary storage into primary storage so that the datais directly
accessible by the processor’sinstructions. Therefore, explicit read and writeroutinecalls are not used to access dataon
disk. All read and write operations are done implicitly by the operating system during execution of aprogram. When
the working set of the data structure can be kept in memory, performance begins to approach that of memory-resident
databases.

To show theefficiency of memory mapping, amemory mapped implementation was constructed, which allowedfile
access experimentsto be performed between traditional and memory mapped schemes. A tool kit approach was adopted
for theimplementation because it all ows programmersto participatein some of the design activity; thetool kit iscalled
pDatabase. Persistence in pDatabase is orthogonal because creating and manipulating data structuresin a persistent
areaisthe same asin a program. pDatabase isintented to provide easy-to-use and efficient tools for devel oping new
databases, and for maintaining existing databases. While pDatabase shares the underlying principles of asingle-level
store with other recent proposals [CFW90, SZ90a, LLOW91, STP*87], it offers features that make it unique and an
attractive alternative. pDatabase isnot an object store but it could be used to implement one.

Inthispaper, afilestructureisdefined to beadatastructurethat isa container for user records on secondary storage;
afilestructurerel ates therecordsin aparticul ar way, for example, maintaining therecordsin order by one or more keys.
An access method is defined to be a particular way that records are accessed. Examples of different access methods
are: initial loading of records, sequential access of records, keyed access of records.

In Antonio Albano and Ron Morrison, editors, Persistent Object Systems, pages 166—185, San Miniato, Italy, September 1992. Springer-Verlag.
Workshopsin Computing, Ed. by Professor C. J. van Rijsbergen, QA76.9.D3159.

2 Motivation

A database programmer is faced with the problem of dealing with two different views of structured data, viz. the data
in primary storage and the data on secondary storage. Traditionally, these two views of datatend to be incompatible
with each other. It is extremely difficult and cumbersome to construct complex relationships among different objects
without the help of direct pointers. However, it is generally impossibleto store and retrieve data structures containing
pointersfrom disk without converting at least the pointersand at worst the entire data structure into a different format.
Considerable efforts, both in terms of programming and execution time, have to be made in such systems to transform
datafrom oneview to theother. In general, these transformationsare data structure specific and must be executed each
time the data structureis stored or read from secondary storage. Furthermore, the powerful and flexible data structur-
ing capabilities of modern programming languages are not directly available for buil ding data structures on secondary
storage.

In spite of these rather taxing difficulties, database implementors have traditionally rejected the use of mapped files
and have chosen to implement the lower-level support for databases themselves using traditiona approaches. This
rejection isnot totally based on thelack of memory mapping facilities. The earliest use of memory mapping techniques
can be traced back 20 years to the Multics system. However Multics provided these facilitiesin aframework that was
very rigid and difficult to work with. More recent operating systems have begun to provide means for implementing
the idea of a single-level store. See [SZ90a, p. 90] for other reasons why mapped files have not been popular with
database designers. All of these reasons are now addressed by new operating systems[TRY 87, Sun90], which provide
extended access to the virtual memory, and new hardware, which provides large address spaces (64 bits) and N-level
paging [Mip91, RKA92].

3 Memory Mapping
3.1 Disadvantagesof Memory Mapping

L arger PointersMemory pointersmay belarger than disk offsets, whichincreasesthe sizeof thefilestructuremarginally
increasing access cost.

Non-Uniform Access Speed The apparent direct access of data can give afalse sense of control to the file structure
designer. Whileafile'scontentsare directly accessible to the processor, the access speed is non-uniform—whenanon-
resident pageis referenced, along delay occurs as for atraditional 1/0 operation; otherwisethe reference isdirect and
occurs a norma memory speed. When programming a file structure using memory mapping, certain data structures
will be inappropriate because of their access patterns.

3.2 Advantagesof Memory Mapping

Common Data Structure in Primary and Secondary Memory Use of programming-language data structuresto or-
ganize the contents of a file eliminates the need to convert to a secondary storage format, which resultsin code that is
substantially more reliable and easier to maintain. Also, for complex data structures, like an abject in a CAD/CAM
system, thereis a significant performance advantage.

Reduced Need for Explicit Buffer Management A sophisticated buffer manager is crucia for the performance of
atraditional database system. Furthermore, afile structure designer must be skilled in its use, explicitly invoking its
facilitiesand pinning/unpinning buffers. On systems without pinning support, double paging is a serious drawback. A
memory mapped access method is less complex because I/O management is largely transparent and is handled at the
lowest possiblelevd (instruction fetch and store).

SimpleL ocalization Whilelocality of referencesiscrucia for all datastructureswhere access isnon-uniform, memory-
mapped access methods can easily take advantage of it by controlling memory layout. Because the data structures on
secondary storage can be manipulated directly by the programming language, tuning for localizationis straightforward.

Rapid Prototyping of Access Methods Because a file structure designer works with a uniform view of data, afile
structure can be reliably constructed in a short period of time, using al the available programming-language tools.
Polymorphism, interactive debuggers, execution and storage profilers, and visualization tools are some examples of
directly usable aids.

Memory Mapping on a Loaded System It is our contention that memory-mapped access methods can potentially
achieve better performance than traditional database systems, particularly on a shared system. A buffer manager is
often in conflict with other applications, in particular, holding storage that it is not using. On the other hand, memory-
mapped access methods can immediately take advantage of avail able storage to reduce 1/O operations.

Contiguous Address Space Memory mapping provides the file structure designer with a contiguous address space
even when the data on secondary storage is not contiguous. A single object within a given file structure may be split
into severa extents on one disk or across multiple disks, and a file structure designer may see nothing difference or
only a sparse address space.

4 pDatabase Design Methodology

Instead of using reachability [PS-87, MBC*89], uDatabase uses the notion of a persistent area, in which data objects
can be built or copied if they are to persist [BZ86, BZ89]. A persistent area is currently implemented by an operating
system file. If dataisto betransferred from one persistent area to another, the data must be copied through an interme-
diate area. Alternatively, persistent data can be manipulated directly by migrating an application task to the persistent
area and perform the operationsdirectly on thedata. The amount of task migration and/or copying depends onthe size
of the data and the amount of work performed when manipulating the data. In all cases, the user interface to the file
structure provides encapsul ation to ensure its integrity.

An application may need to access several persistent areas simultaneously. Our design requirements mandate that
support for multiple accessible file structures in a single application be provided, while alowing each file structure
to use conventional pointers without having to adjust them. To accomplish this requirement, each persistent area is
mapped into its own segment. This approach isin contrast to systems that provide simultaneous access by mapping
multiple persistent areas into the same segment. In these systems, all pointers are relocated when portions of an area
are mapped. In generd, thisrequires access to the typeinformation of thefile structure at runtime, whichisnot usually
possiblein programming languages that do not have runtime type-checking. Also, significant execution overhead is
incurred in rel ocating pointers.

Currently, uDatabase does not cover pointers among persistent areas (see [BZ89] for a possible solution). Nor
doesit dea withdistributed persistent areas; we believethat distributed shared memory [SZ90b, WF90] will allow our
current design to sca e up to adistributed environment. Object-oriented programming techniques are employed in the
implementation of pDatabase, but are not essentid. pC++ [BDST92] isused as the implementation |anguage, which
isasuperset of C++ with concurrency extensions, because it allowsimmediate technol ogy transfer.

The following two properties evolved during the design and implementation of uDatabase. First, data associated
with accessing a file structure, such as current location in the file, concurrency data or transient recovery information
are not mapped in thefile structure. Second, a deliberate attempt is made to retain the conventional semantics of open-
ing and closing afile. Implicit schemes, like pointer-swizzling, have problems detecting the first access but the most
difficult problem is knowing when the access can be terminated (garbage collectors are too slow). The propertiesin-
volve severa levels, each performing a particular aspect of the storage or access management of thefile structure (see
Figure1).

disk file
secondary
Storege T memory T non-transient
primary 1 mapping | transient
storage
representative
accessor, ‘ ‘ accessor, ‘ ‘ accessors ‘ ‘ aCCESSOly | oo o file structure
implementor
d ' ' database implementor
application, application, e or user

Figure 1: Basic Structure of the Design Methodol ogy

41 Representative

A representative is responsiblefor creation and initialization of thefile structure for the storage management of access
method datain primary storage, for concurrent accesses to the file's contents, and for recovery. Each file structure has
aunigue representative. In pDatabase, the representative is a UNIX process, which hasits own virtual address space
in which transient information is maintained and the file is mapped, and its own thread of control. The representative
process is created on demand, during creation of afile and for subsequent access by a user, and exists only as long as
required by either of these operations.

A representative’'s memory is divided into two sections. private and shared (see Figure 2). Private memory can
only be accessed by the thread of control associated with the UNIX process that created it, i.e. the representative. The
disk fileis mapped into the private memory while al data associated with concurrent access to thefileis contained in
the representative's shared memory; such datais aways transient. Shared memory is accessible by multiple threads
associated with UNIX processes that interact with the representative. Thereis no implicit concurrency control among
threads accessing shared memory; mutual exclusion must be explicitly programmed by the file structure designer using
thefacilitiesin pC++.

r—-—- - - - - - - - - - - - = il
o access access :
a%lgggg‘lson | object; object |
| |
. - - — _ 4
A -~~~ shaed
| ' memory
: ‘ concurrency control ‘ :
| |
representative ' 16M (SegmentBase Adr)
process [|
| |
- rivate
: ‘ file structure ‘ : R1em0ry
| |
/S A
| MAP |
| |
\ Y
disk file

Figure 2: Storage Model for Representative

To alow addresses to be stored directly into thefile and subsequently used, thefollowing conventionisobserved by
all representatives. the disk file must be mapped into memory starting at a fixed memory location, called the Segment
Base Address. Thefile base address is conceptually the virtual zero of a separate segment; thisis how pDatabase uses
aUNIX process as aseparate segment. In yDatabase, the value 16M has been chosen for the Segment Base Addressas
thestartinglocation of all mapped files; thisleaves asufficiently large space for the application and the representative(s).

An applicationin pDatabase can have multiplefile structures accessible simultaneously. Thiscapability ispossible
because each representative has its own private mapping area. Figure 3 shows the memory organization of an applica
tion using 3 file structures simultaneously. Since each representative has its own segment, relocation of pointersin a
file structureis never required. The disadvantage of this approach is that there can never be pointers from the shared
areato any of the private mapped areas and vice versa. However, addresses from one file structure can be stored in
another file structure, but such addresses can only be dereferenced in the file structure they come from. Hence, either
datamust be copied out of afile structureto be manipulated by the application and copied back again, or an application
light-weight task must migrate to the representatives to perform a series of operations.

4.2 B-TreeExample

To define afile structure, e.g. BTreeFile, an abstract data-type is defined with two operations that are implicitly per-
formed: initialization and termination; no other operations are available. A B-Treeis defined as follows:

private shared private

memory memory memory
R AT T S EI
[1 " [
. | representative "1 gpplication 1! | representative ' .
fllel MAP : process; b process ! processs : MAP flleg
[b o [
Lol T TN [a
S | ‘ S
| |
| representative ! private
| processs "l memory
| |
Lo i
| |
: MAP :
f’ilez

Figure3: Accessing MultipleFile Structures

class BTreeFile {
public:
BTreeFile(char *DiskFileName, ...) { initializationcode };
"BTreeFile(void) { termination code };

H

The initidization routine BTreeFile and the termination routine™ BTreeFile are invoked automatically whenever an
instance of BTreeFile is created and deleted, respectively. An instance of a B-Treefile structureis created using type
BTreeFile, asin: BTreeFile f("StudentData”, other arguments), where StudentData isthe name of theUNIX filein
which the data are stored and retrieved from. There are no user visibleroutines, which ensures that after the declaration
of an instance of BTreeFile, the corresponding file structure is not ble to the user/application program.

4.3 Access

The mechanismsfor requesting and providing access to afile structureare providedin theform of another abstract data-
type, which isimplemented as a class called an access class. Declaration of an access class instance, called an access
object, constitutesthe explicit action required to gain access to a file's contents (i.e. create the mapping). Creating an
access object corresponds to opening afile in traditional systems but it is tied into the programming-language block
structure. As well, the access object contains any transient data associated with a particular access (e.g. the current
record pointer), whilethe representative containsglobal transient information (e.g. thetypeof access for each accessor).
Because the access object is in the application process, communication between it and the representative process is
done by synchronous calls passing data through shared memory. At least one access class must be provided for each
filedefinition. It ispossibleto have multipleaccess classes, each providingadistinct form of access (e.g. initial loading,
sequential, keyed). Itisalso possibleto have multipleaccess objectscommunicating with the same representative. This
capability allows an application to have multiple simultaneous views of the data (see Figure 1).
For BTreeFile, the access object is called BTreeFileAcc.

class BTreeFileAcc {
public:
BTreeFileAcc(BTreeFile *f, char *access) { initialization code };
"BTreeFileAcc() { termination code };

read(...) {... };

... { other appropriate access routines };
}

To gainread access to afile structure object f, an application program declares an instance of BTreeFileAcc, asfollows:

BTreeFileAcc pf(&f, "r"). The pointer to f specifiesthefile structurethat is to be accessed through pf, and "r” specifies
the kind of access for concurrency control purposes. Depending on the particular kind of concurrency control, the
declaration of the access object may block until itis safe to access thefile contents and/or individual accessroutinecalls
may block. Onceinstantiated, theaccess object can be used by an applicationto perform operationson thefile structure
by invoking the public member routines of BTreeFileAcc. For example, in order to read fromf, acall is madeto the
member routineread of BTreeFileAcc, asin pf.read(...). Theroutineread communicates with the representative to
perform the desired operation.

44 Generic B-Tree

The polymorphicfacilitiesof aprogramming language can be applied to generalize the definitionsof file structuresand
to alow reuse of thefile structure’ simplementation by other file structures. A generic B-Treefile structureispresented
to demonstrate the basic concept. The template facilities of C++ alow the creation of generic file structures (asin E
[RCS89]). The generic B-Tree definition has 2 type parameters and 1 conventional parameter. The type parameters
provide the type of the key and the type of the record for the B-Tree. The optional conventional parameter provides
the size of the B-Tree nodes in bytes. Each B-Tree instance generated from a generic B-Tree type has 3 conventional
parameters: the backing-store UNIX file name, the routine used to compare the keys and the initial space allocated for
the B-Tree in bytes. The following creates two specialized B-Trees:

BTree<int, Record, 4 Kb> db1(" db1BTree", less), at10.0pt// defaultinitia size
db2(" db2BTr ee", greater, 30 Kb); // 30K initial size

Both B-Trees have int keys, Record records and a4K node size. One instanceis sorted in ascending order (less) and
the other one in descending order (greater). Unfortunately, this B-Tree instantiation requiresthe UNIX file name and
the name of the comparison routine be re-specified at each subsequent usage of thefile structure, which istype unsafe.
However, once these two aspects of a file structure are specified correctly, all subsequent access to the database file
structure can be statically type-checked.

There are severa requirements on the key type, the record type and the comparison routine. Aswell, some addi-
tional routinesmust be supplied. For example, the type of the key and the record must provide an assignment operator,
among other things, and the comparison routine must have a specific type. A compl ete example showing the creation
of aB-Treeand insertion and retrieval of recordsis presented in Figure 4.

In uDatabase, each file structure can provide range queries using a generator or iterator [RCS89, LAB*81], eg.
BTreeGen. The generator is an object whose arguments define the kind of range query and it returns one record at
atime from the set of records that satisfy the requirements denoted by the information provided to the generator. The
operator ¢, ¢, returnsapointer to some record withinthe specified range, but successive records are not normally ordered.
If al recordsin the range have been returned, the NULL pointer is returned. By iteratively invoking the operator ¢,¢,,
the individual records of the range query are obtained.

45 Storage Management

In pDatabase, memory is divided into three magjor levelsfor storage management: an address space, which isa set of
addressesfrom Oto N used to refer to bytesor words of memory; asegment, which isacontiguousportion of an address
space; and aheap, whichisacontiguousportion of asegment. All segmentsare nested in an address space and all heaps
are nested in asegment. Further, since a heap issimply ablock of storage, it is possible for heaps to be nested within
one another. The form of the address for each level may depend on the storage management scheme at that level.

While there are alarge number of storage management schemes possible at each level of nesting, the following
three basic schemes are provided in pDatabase: uniform management, the allocation size is the same for the duration
of the heap; variable management, the all ocation size can vary but each allocation remainsthat sizefor itsduration (like
C’smalloc and free routines); dynamic management, the allocation size can vary in size and each allocated area can
expand and contract in size after itsallocation.

A heap may be accessed in two ways: by the file structure implementor and by a nested heap. For example, the
storage management for a B-Tree has 3 levels: the segment, within which uniform-size B-Tree nodes are alocated,
withinwhich uniformor variablesized recordsare allocated. Depending on the particul ar implementation of thestorage
manager at each level, different capabilities will be provided. A file structure implementor makes calls to the lowest
level (variable storage manager) to allocate records. An expansion object can be passed to the uniform storage manager

class Record { // datarecord
public:
float field1, field2;
Record &operator=(const Record &rhs) { // define assignment
fieldl = rhs.fieldl;
field2 = rhs.field2;
return(*this); }
3
int greater(const int &op1, constint &op2) { // key ordering routine
return opl > op2;
}
void uMain::main() { // uMain uC++ artifact
BTree<int, Record, 4 Kb> db("t est db", greater, 30 Kb);
BTreeAccess<int, Record, 4 Kb> dbacc(db); // open B—Tree
int key;
Record rec, *recp;
// insert records
for (key = 1; key <=1000; key +=1) {
rec.fieldl = key / 10.0;
rec.field2 = key / 100.0;
dbacc.insert(key, &rec); } // static type—checking
// retrieve records
for (BTreeGen<int, Record, 4 Kb> gen(dbacc); gen >> recp;) {
uCout << recp—>fieldl << " " << recp—>field2 << endl; }

Figure 4: Example Program using a Generic B-Tree

to deal with node splitting and other application-specific requirements. If the segment fills with uniform-size nodes,
the representative storage manager is called by the uniform storage manager to extend the segment.

The criterion used to judge the general storage management approach iswhether it can provide performancethat is
closeto traditiona schemes that amal gamate storage management directly with the datastructure. Both an independent
and integrated storage management B-Tree were constructed and creation tests were run. The results were virtually
identical, with timingsvarying by + 2%.

5 Experimental Proof

A number of compelling arguments have been made in [CFW90] and other publications for the use of single-level
stores for implementing databases. In spite of these arguments, it is clear there is till resistance and skepticism in
the database community. Furthermore, our contention is that mapped files can be used advantageoudly for building
databases not only in the new single-store environment but also in the traditional environment. Traditional databases
can be accessed using memory-mapped access methods without requiring any changestothefile structure. Inall cases,
the mapped access methods should provide performance comparable to traditional approaches while making it much
easier to augment the access methods of the file structure in the future by greatly reducing program complexity.

At thestart of our work, therewaslittle published experimental evidence availableto support the view that memory-
mapped file structures could perform as well as or better than traditional file structures. Therefore, it was necessary to
implement anumber of different memory-mapped file structures and to compare their performance against equivalent
traditional ones.

5.1 Experimental Structure

To demonstrate the benefits of memory mapping, different experiments were constructed. The general form of an ex-
periment was to implement afile structurein the traditional and memory-mapped styles, perform retrievalsfrom afile,
which isthe most common form of access in adatabase, and compare theresults. While every effort was made to keep
the two file structures as similar as possible, some system problems precluded absolutely identical execution environ-
ments. In particular, thetraditiona file structureswere stored on disk as character-special UNIX filesand an LRU buffer
manager was used. The memory-mapped files could not be mapped from acharacter-special fileand had to be accessed
fromthe UNIX file system, which performsal I/0O in 8K blocks even though the system page sizeis 4K. Therefore, to
make the comparisons equal, all of thefile structureshad 8K node sizes and all I/O was donein 8K blocks.

All experiments were run on a Sequent Symmetry with 101386 processors, which uses a simple page-replacement
algorithm. The page-replacement algorithmis FIFO per pagetable plusagloba LRU cache of replaced pages so there
isasecond chance torecover apagebeforeitisreallocated. The maximum total size of theresident pagesfor aprogram
is determined by the user and upon exceeding that size, pages are removed from theresident set on aFIFO basis. Upon
removal, apage is put into the global cache where it can be reinstated to the resident set if afault occurs for the page
before the page isreused. This page replacement a gorithm was matched against an LRU buffer-manager used by the
traditional databases.

The execution environment was strictly controlled so that results between traditional and memory-mapped access
methods were comparable. First, al experiments were run stand-alone to preclude external interference, except for
those experiments that needed a loaded system. Second, the amount of memory for the experiment’s address space
and the globa cache were tightly controlled so that both kinds of file structures had exactly the same amount of buffer
space or virtual memory, respectively. Thetest filesvaried in sizefrom 6-32 megabytes. The amount of primary storage
availablefor buffer management or paging was restricted so that theratio of primary to secondary storage was approx-
imately 1:10 and 1:20. These ratios are believed to be common in the current generation of computers, supporting
medium (0.1G-.5G) to large databases (1G-4G) but not very large databases.

The following experiments were implemented:

Prefix BT Tree In thisexperiment, 100,000 uniformly distributed records were generated whose keys were taken from
theunitinterval. A record had avariable length with an average of 27 bytes. These records were inserted into a prefix
Bt Tree[BU77]. For thisB-Tree, 4 query fileswere generated, where the queriesfollowed auniformdistribution. Each
fileis described by the tuple (n,m) where n isthe number of queries and misthe number of records sequentially read
from the B-Tree (range query). For example, (10,1000) means executing 10 queries with each query reading a set of
1000 records sequentially. A 5th query file contained 10,000 exact match queriesthat follow anormal distributionwith
mean 0.5 and variance 0.1.

R-Tree The R-Tree[Gut84] isan access method for multidimensional rectangles. It supportspoint queriesand different
types of window queries. A point query asks for al rectangles that cover a given query point whereas awindow query
asks for al rectangles which enclose, intersect or are contained in a given query rectangle. The window queries are
similar to arange query in an ordinary B-Tree. However, thereis one basic difference: index pages (interna nodes)
are accessed more frequently in the case of the R-Treethan in the B-Tree case.

For this experiment, 2-dimensional data (100,000 rectangles) and queries from a standardized test bed [BKSS90]
were taken. The maximum number of datarectangles was limited to 450 in the data pages, and to 455 in the directory
pages. The query file consisted of 1000 point queries and 400 each of the three different types of window queries.

Graph To simulate the access patterns found in other data intensive applications (e.g. hypertext or object-oriented
databases), alarge directed graph was constructed consisting of 64,000 nodes, each of which was 512 bytes. The nodes
were grouped into clusters of 64 where nodes in a cluster were physically localized. An edge out from anode had a
high praobability (85%, 90%, 95%) of referencing anode withinthe same cluster. Edges|eaving a cluster went to auni-
formly random selected node. Each experiment consisted of 40 concurrent random wal ks within the graph, consisting
of 500 edge traversals each.

The results of the experiments are presented in Table 1. For each query file, three performance measures were
gathered: the CPU time, the elapsed time, and number of pages or buffers read. The CPU time isthetotal time spend
by all processorsinagiventest run, and hence, the CPU timemay be greater than the elapsed time. Multipleprocessors
were used in both traditional and memory mapped experiments. The retrieval application ran on one processor while
the access method for the particul ar file structure ran on another processor. The elapsed timeistherea clock timefrom
the beginning to the end of the test run. Both times include any system overhead.

Primary Memory Size 10% of Database Size

Memory Mapped Traditional
CPU* | Elapse | Page || CPU | Elapse | Disk
Access | Query Time | Time | Reads || Time | Time | Reads
Method | Distr. (secs) | (secs) (secs) | (seco)

Prefix 1x10,000 35.7 19.7 61 32.2 32.9 53
B-Tree 10x1,000 35.7 195 56 325 32.6 58
100x100 375 224 147 354 35.7 150
10,000x1 98.1 | 2176 | 8789 | 2405 | 223.6 | 8746

normal 918 | 1810 | 6777 | 2023 | 183.6 | 6638
R-Tree non-point || 154.0 | 1745 | 1414 | 3304 | 3341 | 1462
point 1094 | 1241 934 || 2305 | 2344 896

Network | 85%]local || 318.1 | 476.1 | 15294 || 526.7 | 458.8 | 15004
Graph 90%local || 271.6 | 3755 | 11278 || 449.0 | 370.7 | 11368
95%local | 207.0 | 243.8 | 6584 || 337.7 | 254.7 | 6539

Primary Memory Size 5% of Database Size

Memory Mapped Traditional
CPU* | Elapse | Page || CPU | Elapse | Disk
Access | Query Time | Time | Reads || Time | Time | Reads
Method | Distr. (secs) | (secs) (secs) | (seco)

Prefix 1x10,000 355 195 61 35.3 355 117
B-Tree 10x1,000 35.2 19.6 66 34.2 335 131
100x100 37.0 221 155 374 36.6 216
10,000x1 1278 | 255.6 | 9415 || 260.7 | 2241 | 9723

normal 126.6 | 2358 | 8250 || 2538 | 2176 | 9313
R-Tree non-point || 1813 | 227.8 | 2913 || 367.1 | 3745 | 3396
point 136.8 | 1845 | 2647 || 2795 | 289.6 | 3491

Network | 85%loca || 383.3 | 565.8 | 17772 || 563.4 | 495.8 | 16550
Graph 90%locd || 330.3 | 462.1 | 13602 || 484.0 | 4039 | 12781
95%]locd || 2649 | 3166 | 8338 || 3619 | 276.1 | 7400
CPU times may be greater than elapse time because multiple CPUs are used.

Table 1: Access Method Comparison : Node Size 8K

The resultsof the experiments confirm the conjecturethat performance of memory-mapped file structuresisequiva-
lent or better than traditional file structures. For theread operations, the memory-mapped access methods are compara-
ble (+ 10%) totheir traditional counterparts. An exception occurswhen the LRU buffer spaceisonly 5% of thefilesize
for sequential reads because the LRU algorithmis suboptimal in this case while the FIFO page-replacement a gorithm
isnear optimal. For the CPU times, the memory-mapped access methods are generally better than the traditional ones
because thereislesstime spent doing buffer management. For the el apsed times, the memory-mapped access methods
are comparable (4 10%) to their traditional counterparts. An exception occurs when memory-mapped access methods
perform small sequential reads because the FIFO page-replacement agorithmis near optimal in this case. All of the
results show that the Sequent page replacement scheme performed comparably to the LRU buffer-manager.

To verify the conjecture on the expected behavior of mapped access methods on aloaded machine, the previous B-
Tree experimentswere run during a peak-1oad period of 20-30time-sharing users on the Sequent. The memory mapped
and traditional B-Treeretrieval swere started at the same time (3:00pm) and so were competing with each other as well
as al other users on the system. The two file structures were on different disks accessed through different controllers
so the OS could not share pages and retrieval s were not interacting at the hardware 1/0 level. However, the amount of
global cache could not be restricted during the day, so if there was free memory availabl e, the memory-mapped access
method would use it indirectly. Table 2 shows the averages of 5 tridls. As can be seen, there was a difference only
when there were a significant number of reads. In those cases, the memory-mapped access methods make use of any
extrafree memory to buffer data. Thisis particularly noticeable for the normal distribution because any extra memory

significantly reduced the pages read, and hence, the elapse time. Clearly, the LRU buffer manager could be extended
to dynamically increase and decrease buffer space depending on system load, but that further complicates the buffer
manager and duplicates code in the operating system.

Primary Memory Size 10% of Database Size

Memory Mapped Traditional
CPU* | Elapse | Page || CPU | Elapse | Disk
Access | Query Time | Time | Reads || Time | Time | Reads
Method | Distr. (secs) | (secs) (secs) | (seco)

Prefix 1x10,000 35.8 216 60 34.0 35.7 53
B-Tree | 10x1,000 36.1 218 56 34.8 36.8 58
100x100 374 | 2524 143 37.0 | 38.68 150
10,000x1 || 111.2 | 2770 | 6677 || 2634 | 263.3 | 8746
normal 9782 | 1345 | 2063 || 2215 | 2170 | 6638

Table 2: Peak Load Retrievals: Node Size 8K

6 Paralldism

Currently, uDatabase alows a file structure designer to build whatever form of concurrency control is appropriate.
Concurrency control can be specified at alow-level, where semaphores are used to protect data, or at a high-levd,
where light-weight server tasks control access to data. While concurrency control is often tied into a particular data
structure, we believeit is possibleto provide some general concurrency abstractionsto thefile structure designer to aid
in this process. A number of different concurrency techniques are being studied that provide two different forms of
parallelism. Backend concurrency deal swiththe I/O bottleneck, afile structureis partitioned across multipledisks and
access isperformed in paralel. Frontend concurrency alow anumber of requeststo execute in pardlé if the requests
access datain different areas of the database. The question to be addressed is how to use memory mapping with both
backend and frontend concurrency.

6.1 Backend Concurrency

Backend concurrency attemptsto deal with the CPU-1/0 bottleneck by partitioning data across multipledisksand then
accessing thedatain parallel [PGK88]. Exact match queriesusually cannot take advantage of parallelism possiblefrom
partitioningbecause thereisusually only onedisk accessto servicetherequest. Range queries can take advantage of the
parallelism possible from partitioningif the datais distributed so that portions of the range can be accessed in parall€l.
A range query may be broken down into a number of smaller range queries so that each can be executed in paralld.
Similarly, if the file structure is aware of the access pattern of different blocks, it can employ pre-reading techniques
toincrease the paralelismin reading blocks of datafrom the disk. In general, the records returned from arange query
are unordered. If records must be returned in a specific order, that can significantly reduce the amount of parallelism.
In uDatabase, the generator types for each file structure can manage al concurrent retrieva of records implicitly (see
Figure 4)

In the following discussion, the general concern is not about access to theindex portion of the file structure. Nor-
mally theindex isrelatively small so that most of it remains resident in main memory, and consequently, does not play
asignificant role as far as disk accesses are concerned.

6.1.1 Generic Backend Concurrency Algorithm

Once afile structure is partitioned, a retrieval algorithm can take advantage of the potential parallelism, but only if
sufficient hardware is available. First, the disks must be able to be accessed in parallel, which impliesthat there must
be multipledisk controllers. Second, if multiple processors are available, they must be able to be used to perform any
file-structure administrationin parallel with the application processing the records from the range query. Both of these
hardware requirements were satisfied by our Sequent computer.

Theagorithmused for backend concurrency isasfollows. For afilestructurepartitionedacross N disks, the N disk
files are memory mapped into one contiguous segment. Then M (acontrol variable) kernel threads (UNIX processes)

10

are created that al share the data segment containing the mapped file. N + 1 light-weight tasks are created to perform
the retrieval requests and they execute on the M kernel threads. NV of the tasks are retrievers and the (V + 1)“‘ task
isthe leaf retrieval administrator (LRA). For each generator created, a buffer is alocated by the generator, which is
shared between the application and the file structure. Aswell, another task, the file structure traverser, is generated,
which partitionsthe range query. The size of the buffer can be specified as an optional parameter when creating the
generator. The default buffer sizeis 32K bytes. The traverser task assumes the responsibility of organizing the buffer
spaceintheform of asharable buffer pool in some suitable manner. Then thetraverser task searches theindex structure
finding the leaf nodes that contain recordsin therange. For each leaf node, the traverser communicates with the LRA
specifying the leaf, number of recordsin the leaf, and the buffer pool. The LRA farms out the generator requeststo its
retrieval tasks. A retrieval task accesses the specified leaf page, allocates a buffer from the buffer pool, and copies as
many records as will fit from theleaf pageto the buffer. Thelast step isrepeated until all the records have been copied
into buffers and then the retriever task gets more work from the LRA. The structure of this algorithm isillustrated
in Figure 5. This structure ensures that the only bottleneck in the retrieva is the speed that the buffer can be filled
or emptied. In general, an application program can keep ahead of a small number of disks (1-7 disks). This generic
backend concurrency agorithm can be used for different file structures by specidizing thefile structure traverser and
the component responsiblefor processing of individua leaves to extract information.

Partitioned File Structure Segment

File Struct%re\
disk1 @

O

)

dISk2 ' @ ——— R&Ords —= e~~~

Shared Buffer Quetie

' Leaf Retrieval L eaf
- | Administrator
dskn] -
<

Search Index

Figure 5: Backend Concurrency Structure

6.1.2 Experimental Analysisof Partitioned B-Tree

The machine used for these experiments was the same Sequent Symmetry with 8 disk drives, of which 4 were used.
There were 2 disk controllers, each with 2 channels. The drives were equally divided between the controllers. The
experiment was 1000 range querieswith each query consi sted of reading arandom number of sequential records starting
at arandomly selected initial key. The average query size was 2000 records. Two partitioned B-Trees were tested,
one created using around-robin partitioning (each block is created on the next disk) and one created using the Larson-
Seeger algorithm[SL91]. The partitioned experimentswere performed with 14 partitionsand the application program
received each record but did no processing on therecord. The resultsof the experiments appear in thegraphs of Figure
6. The largest decrease in elapsed timeis from 1 to 2 partitions because there are 2 controllers. After that, the elapse
time increases because of contention on the two controllers.

1

400 T T T 400 T T T

380 - Round Robin & 380 Round Robin &

360 | Seeger-Larson —i—_ 360 | Seeger-Larson —|—_

340 — 340 —
Elapse CPU

Time 920 Time 320 - —

(sec) 300 - (sec) 300 - 5

280 + 280 MR*/H

260 260 —

240 — 240 —

| | | | | | | |

1 2 3 4 1 2 3 4

Number of Disks (2 CPUs) Number of Disks (2 CPUs)

Figure 6: Backend Concurrency with B-Trees

6.2 Frontend concurrency

Here the concern iswith alowing multipleclient accessors to simultaneoudly traverse and manipul ate thefile structure.
Currently, uC++ provides a number of language mechanisms for afile designer to build concurrency control. Many
optionswill bebuilt, tested and provided as part of pDatabase tool kit, however thesewill be used to build file-structure
specific concurrency control. Itisalso our intentionto study and devel op agenera purposelow-level concurrency con-
trol facility that will be automatically available to applicationswritten in pDatabase. For example, alowing multiple
versions of datato co-exist allowsa high degree of concurrent and can beimplemented in a genera way.

7 Recovery Control

Implementing recovery is difficult in memory mapping and a satisfactory solutionis still aresearch issue. If thereis
operating-system support to pin pages, traditional schemes can be used (however, with all theassociated disadvantages).
With no operating-system support, new techniques must be developed. We will be examining the use of dual memory
mapsto allow shadow writepages. One mapping represents the consi stent database, which can beread at any time. The
shadow mapping is for pages that are currently being modified. By precisely controlling when the shadow pages are
copied back to the consistent mapping, it is possible to mimic traditional recovery schemes without operating-system
support. The main problem to overcome is premature writing of modified pages by the operating system.

8 Redated Work

The earliest use of memory mapping techniques (or asingle-level store) can be found in the Multics system [BCD72].
In recent times a number of efforts have been made to use memory mapping. The systems described bel ow are most
closely related to pDatabase.

Objectstore Database System Objectstore shares a number of goals and objectives with yDatabase. However, Ob-
jectstore differs significantly from pDatabase in how the goals and objectives are achieved. 1n Objectstore, only the
currently accessed pages used by a given transaction are mapped into the address space of the application. This ap-
proach introduces alimit on the number of different data pages that can be used simultaneously by any single transac-
tion; large operations may have to be broken into a series of smaller transactions. In uDatabase, an entirefile structure
ismapped into an individual segment. Thisapproach limitsthesize of any singlefile structureto belessthan thevirtua

12

space supported by the available hardware; large file structures have to be split into smaller ones. There is, however,
no restriction on how much data a single transaction can access simultaneoudly.

The approach used in Objectstoreresultsin an inferior solution to the problem of accessing multiplefile structures.
Objectstore maps pages of all the databases used in an application into the same address space. Each pagetobeusedis
dynamically alocated a virtual address whereit ismapped; pointers have to be dynamically relocated, which requires
some portion of the type system to be available at runtime. Also, the need to relocate pointers has the potential of
degrading performance of the database.

Cricket: A Mapped, Persistent Object Store Cricket usesthe memory management primitivesof the Mach operating
system to provide the abstraction of a “shared, transactiona single-level store that can be directly accessed by user
applications’ [SZ90a, p. 89]. Cricket followsaclient/server paradigm and, upon an explicit request, maps the database
directly into thevirtua space of the client application. The fundamental difference from uDatabase isthat the mapping
takes placein the address space of the application, and hence, only one database at atime can be used by an application.
Indeed, the concept of a disk file to group related objectsin one collection is not a basic entity in Cricket and it takes
the view that everything that an application needs to use is placed in a single large persistent store. We fed that this
will lead to a certain amount of awkwardness in organizing various components of data and in sharing pieces of data
across different projects. Moreimportantly, thisapproach will not be able to handl e partitioning of dataacross multiple
disks adequately.

Paul Wilson’swork In[Wil91], Paul Wilson describes ascheme that uses pointer swizzling at pagefault timeto support
huge address spaces. The basic scheme is very similar to the one employed by Objectstore except that in Wilson's
scheme pointerson secondary store can have aformat different from the pointersin primary storage. Wilson's scheme
requires aspecia page fault handler for trand ating (swizzling) persistent pointersinto transient pointersat execution
time, which requires runtime type information. Since some of the pointersin a page can refer to pages that have not
yet been made available, the trandation of these pointers requires that all the referent pages be faulted as well. To
prevent a cascade of 1/O operations, Wilson's scheme only reserves the addresses for these extra pages in the page
tableinstead of actually mapping them to primary storage. However, this solution underutilizes the address space and
an application can potentialy run out of addresses. Wilson suggests periodically invalidating al the mappings and
rebuildingthem to deal with thisproblem. Furthermore, objectsthat cross page boundariesrequire additional language
support. Wilson’sschemeisaclear winner for applicationsthat require extremely large persistent address spaces using
existing virtual memory hardware. However, the scheme is complex and may result in significant overhead, especially
for applicationswith poor locality of references. Finally, Wilson’sapproach has the same problems as Objectstorewith
regard to dynamic rel ocation and multiple accessible databases.

TheBubba database system Thedesignersof Bubba[BAC* 90, CFW90], ahighly parallel database system devel oped
at MCC, exploited the concept of asingle-level storeto represent objectsuniformly inalargevirtual addressspace. The
focusof Bubbawas on devel oping a scal abl e shared-nothing architecturewhich coul d scal e up to thousandsof hardware
nodes and the implementation of asingle-level storewas only asmall, thoughimportant, portion of the overall project.
The current design of pDatabase is based on a multiprocessor shared-memory architecture and is not intended to be
used in adistributedenvironment. In Bubba, the Flex/32version of AT& T UNIX SystemV Release 2.2 wasextensively
modified to build a single-level store, which makes their store highly unportable.

9 Conclusion

We have shown that memory mapping isan attractiveaternativefor implementing file structuresfor databases. Memory-
mapped file structuresare simpler to code, debug and maintain, whil egiving comparabl e performance when used stand-
alone or on aloaded system than for traditiona databases. Further, buffer management supplied through the page-
replacement scheme of the operating system seemsto provideexcel lent performance for many different access patterns.
Our design for structuring thelow-level portionsof aDBM Sfor memory mapping providesthe necessary environment
to implement concurrency control and recovery. Finally, these benefits can be made available in tool kit form on any
UNIX system that supportsthe mmap system call. Currently, pDatabase is only missing recovery facilities and these
will be added in the near future.

13

References

[BAC+90]

[BCD72]

[BDS+92]

[BKSS90]

[BU77]

[BZ86]

[BZ89]

[CAC*+84]

[CFW90]

[Guts4]

[IBM78]

[LAB+81]

[LLOWO1]

[MBC+89]

[Mipo1]
[Mos90]

[Org72]
[PGK88]

H. Boral, W. Alexender, L. Clay, G. Copeand, S. Danforth, M. Franklin, B. Hart, M. Smith, and P. Val-
duriez. Prototying Bubba, A Highly Parallel Database System. |EEE Trans. on Knowledgeand Data Eng.,
2(1):4-24, March 1990.

A.Bensoussan, C. T. Clingen, and R. C. Daley. TheMulticsVirtual Memory: Conceptsand Design. Com-
muni cations of the ACM, 15(5):308-318, May 1972.

P. A.Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke. pC++: Concurrency in
the Obj ect-Oriented Language C++. Software—Practice and Experience, 22(2):137-172, February 1992.

N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient and Robust Ac-
cess Method for Points and Rectangles. In Proceedings of ACM SSGMOD International Conference on
Management of Data, pages 322—-331, 1990.

Rudolf Bayer and Karl Unterauer. Prefix B-Trees. ACM Transactions on Database Systems, 2(1):11-26,
March 1977.

P. A.Buhr and C. R. Zarnke. A Design for Integration of Filesinto a Strongly Typed Programming Lan-
guage. In Proceedings |EEE Computer Society 1986 International Conference on Computer Languages,
pages 190-200, Miami, Florida, U.S.A, October 1986.

P. A.Buhrand C. R. Zarnke. Addressing in aPersistent Environment. In John Rosenburg and David Koch,
editors, Persistent Object Systems, pages 200217, Newcastle, New South Wales, Australia, January 1989.
Springer-Verlag. Workshops in Computing, Ed. by Professor C. J. van Rijsbergen, QA76.64.157.

W. P. Cockshott, M. P. Atkinson, K. J. Chisholm, P. J. Bailey, and R. Morrison. Persistent Object Manage-
ment System. Software—Practice and Experience, 14(1):49-71, 1984.

George Copeland, Michael Franklin, and Gerhard Weikum. Uniform Object Management. In Advances
in Database Technology - EDBT’ 90, volume 416, pages 253-268, Venice, Italy, March 1990. Springer-
Verlag.

A. Guttman. R-trees: adynamic index structure for spatia searching. In Proceedings of ACM SGMOD
International Conference on Management of Data, pages 47-57, 1984.

Systen38 Services Overview. IBM, 1978.

BarbaraLiskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler, and Alan
Snyder. CLU Reference Manual, volume 114 of Lecture Notes in Computer Science. Springer-Verlag,
1981.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The Objectstore Database System. Communications
of the ACM, 34(10):50-63, October 1991.

R.Morrison, A. Brown, R. Carrick, R. Connor, A. Dearle, and M. P. Atkinson. The Napier Type System. In
John Rosenberg and David Koch, editors, Persistent Object Systems, pages 3—18, University of Newcastl e,
New South Wales, Australia, January 1989. Springer-Verlag. Workshopsin Computing, Ed. by Professor
C. J. van Rijsbergen, QA76.64.157.

MIPS R4000 Microprocessor User’s Manual. M1PS Computer Systems Inc, 1991.

J. Moss. Working with Persistent Objects: To Swizzle or Not to Swizzle. Technica Report CS Technical
Report 90-38, Computer Science Department, University of Massachusetts, May 1990.

E. I. Organick. The Multics System. The MIT Press, Cambridge, Massachusetts, 1972.
D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant Arrays of Inexpensive Disks(RAID).
In Proceedings of the 1988 ACM SIGMOD. ACM, June 1988.

14

[PS-87]

[RCS8Y]

[RKA92]

[SL91]

[STP*87]

[Sun90]

[SZ904]

[SZ90b]

[TRY+87]

[vO90]

[WF90]

[Wil9d]

The PS-Algol Reference Manua, 4th Ed. Technical Report PPRR 12, University of Glasgow and St. An-
drews, Scotland, June 1987.

Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. The Design of the E Programming L anguage.
Technical Report CS-TR-824, Computer Science Department, University of Wisconsin-Madison, Madi-
son, Wisconsin, 53706, February 1989.

J. Rosenberg, J. L. Keedy, and D. A. Abramson. Addressing Mechanisms for Large Virtual Memories.
The Computer Journal, 35(4):369-375, August 1992.

Bernhard Seeger and Per-Ake Larson. Multi-Disk B-trees. In Proceedings of the 1991 ACM S GMOD,
pages 436445, Denver, Colorado, USA, June 1991. ACM.

Alfred Z. Spector, D. Thompson, R. F. Pausch, J. L. Eppinger, D. Duchamp, R. Draves, D. S. Daniels, and
J. L. Bloch. Camelot: A Distributed Transaction Facility for Mach and the Internet - An Interim Report.
Technical Report CMU-CS-87-129, Carnegie Méellon University, 1987.

System Services Overview. Sun Microsystems, 1990.

Eugene Shekita and Michael Zwilling. Cricket: A Mapped, Persistent Object Store. In A. Dearle et d,
editor, |mplementing Persistent Object Bases: Principlesand Practise, pages 89-102. M organ Kaufmann,
1990.

M. Stumm and S. Zhou. Algorithms Implementing Distributed Shared Memory. |EEE Computer,
23(5):54-64, May 1990.

A. Tevanian, Jr., R. F. Rashid, M. W. Young, D. B. Golub, M. R. Thompson, W. Bolosky, and R. Sanzi. A
Unix Interfacefor Shared Memory and Memory Mapped FilesUnder Mach. In Proceedings of the Summer
1987 USENIX Conference, pages 53-67, Phoenix, Arizona, June 1987. USENIX Association.

Peter van Oosterom. Reactive Data Structures for Geographic Information Systems. Ph.D. Thesis, Dept.
of CS, Leiden University, December 1990.

K.L. Wu and W.K. Fuchs. Recoverable Distributed Shared Virtual Memory. |EEE Transactionson Com-
puters, 39(4):460-469, April 1990.

Paul R. Wilson. Pointer Swizzling at Page Fault Time: Efficiently Supporting Huge Adrress Spaces on
Standard Hardware. Computer Architecture News, 19(4):6-13, June 1991.

15

